
Compiler Directed Architecture-Dependent
Communication Optimizations

Susan Karen Hinrichs

June 1995

CMU-CS-95-155

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Thomas Gross, Chair
David R. O’Hallaron

Peter Steenkiste
Robert Schreiber, RIACS, NASA Ames

c
 1995 Susan K. Hinrichs

This research was sponsored in part by the Advanced Research Projects Agency/CSTO monitored by SPAWAR
under contract N00039-93-C-0152, and in part by the Air Force Office of Scientific Research under Contract
F49620-92-J-0131.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of ARPA, the Air Force, or the U.S. Government.

Keywords: Data parallel compilation, communication optimizations, communication resource
management, distributed memory systems.

iii

Abstract

Communication required for distributed data structures is one of the major overheads of
parallelization. Poor communication performance limits the the scalability of a given program,
i.e. the number of processors that can effectively work on a problem.

Differences in the architectures of different parallel systems affect how communication
models perform on these systems. To minimize communication overheads, the parallel applica-
tion should use the communication model that performs best on the target machine. For many
systems, a static communication resource reservation model enables more efficient resource
usage and improved communication performance.

Data parallel compilers are well-suited to the task of selecting the appropriate communi-
cation model for the target architecture. With communication pattern analysis and architecture
information, the compiler can optimize communication within each communication step and
between communication steps. Knowledge of the target communication resources and all com-
munication patterns enables the compiler to schedule use of limited resources and eliminate
redundant control information.

This thesis describes the implementation of a communication generation and optimization
phase in the Fx compiler. The effect of these communication optimizations are evaluated on
a suite of programs. Targeting alternative communication models can reduce communication
time up to 50% and total execution time by 10 to 20%.

iv

Acknowledgements

Many people have helped me along the way making it possible for me to finish this thesis. My
family and in particular my mother have been very supportive and made me believe that I am
capable of doing anything I set my mind to. Teachers in high school and college have also
influenced me to look at the possibilities beyond central Illinois.

Thomas Gross has been a very good advisor by keeping me directed but also reminding
me to keep an eye on the big picture. I have been very fortunate to work with interesting
groups in the iWarp and Fx projects. The people and work performed in these groups have been
essential to my thesis work and technical development in general. In particular, discussions and
collaborations with Tom Stricker, Jim Stichnoth, Tom Warfel, and Michael Hemy have been
very fruitful. This thesis work also benefited from discussions with the iWarp group at Intel
and the SUNMOS development team at Sandia National Labs.

Comments of my committee members have greatly improved the presentation of this docu-
ment. Thanks to Rob Schreiber for reading the document very carefully and presenting views
from outside the Carnegie Mellon environment. Peter Steenkiste provided early comments and
made good suggestions for basic structural improvements in the document. Discussions with
Jaspal Subhlok improved the presentation of the synchronization elimination algorithm. Dave
O’Hallaron suggested the image analysis evaluation program.

The people in the Carnegie Mellon environment have been important for me growing
technically and keeping my sanity these past six years. Thanks to the dinner co-op members for
maintaining some semblance of a social life, my cultural husband Bob Doorenbos for taking me
to the opera and the Y concerts, and my officemates: Peter Stout, Hugo Patterson, Tom Warfel,
and John Hampshire for the random bull sessions in the office.

Finally, thanks to my husband Alan for being there and making me remember that there is
more to life than this thesis and the academic world. His unconditional love and support is very
important.

v

vi

Contents

1 Introduction 1
1.1 Thesis statement: 2
1.2 Compiler structure: 2
1.3 Thesis contributions: 5
1.4 Other communication optimization approaches: : : : : : : : : : : : : : : : 6
1.5 Dissertation road-map: 7

2 Model and architecture background 9
2.1 Compiler model : 9

2.1.1 Thesis assumptions: 10
2.2 Communication architecture: 12

2.2.1 Distributed memory architecture: 12
2.2.2 Communication performance characteristics: : : : : : : : : : : : : : 13
2.2.3 Implementation options: 14
2.2.4 Thesis assumptions: 18

2.3 Communication models: 18
2.3.1 Dynamic resource reservation: 19
2.3.2 Static resource reservation: 21
2.3.3 Model implementations: 26
2.3.4 Thesis communication targets: 33

2.4 Chapter summary: 35

3 Communication analysis 37
3.1 Data placement: 37

3.1.1 Automatic data alignment: 40
3.1.2 Automatic data distribution: 46
3.1.3 Hybrid alignment and distribution analysis: : : : : : : : : : : : : : 47

3.2 Communication maps: 50
3.2.1 Data-to-node maps: 51
3.2.2 Node-to-node maps: 53
3.2.3 Using communication maps: 54
3.2.4 Maps on a finite physical array: 55

3.3 Replication and privatization: 57
3.4 Assigning logical arrays to physical arrays: : : : : : : : : : : : : : : : : : : 58

vii

Contents viii

3.5 Chapter summary: 58

4 Architecture-directed communication code selection 61
4.1 Communication code selection issues: 61
4.2 Communication code selection algorithm: : : : : : : : : : : : : : : : : : : 63
4.3 Communication code generation: 65
4.4 Communication code selection evaluation: : : : : : : : : : : : : : : : : : : 66

4.4.1 iWarp measurements: 67
4.4.2 Paragon measurements: 68

4.5 Discussion: 72
4.6 Chapter summary: 75

5 Communication code selection with limited resources 77
5.1 Examples of communication resources: 77

5.1.1 iWarp : 78
5.1.2 T9000 : 78
5.1.3 ATM networks: 81
5.1.4 Paragon : 82
5.1.5 Flash: 83
5.1.6 General communication resources: : : : : : : : : : : : : : : : : : : 83

5.2 Resource problems: 84
5.2.1 Function packing : 86
5.2.2 Phase division: 88
5.2.3 Function packing in multiple phases: : : : : : : : : : : : : : : : : : 94

5.3 Evaluation of resource management: 95
5.3.1 Function packing evaluation: 96
5.3.2 Phase division evaluation: 98

5.4 Extending the resource model: 103
5.5 Chapter summary: 104

6 Synchronization elimination in the deposit message passing model 107
6.1 Synchronization requirements in parallel systems: : : : : : : : : : : : : : : 107
6.2 Synchronization requirements of the deposit model: : : : : : : : : : : : : : 109
6.3 Synchronization elimination algorithm: 110

6.3.1 Working with communication maps: : : : : : : : : : : : : : : : : : 111
6.4 Examples : 112

6.4.1 SOR : 112
6.4.2 Two dimensional FFT: 112

6.5 Improving the approximation: 114
6.6 Effects of synchronization elimination: 119
6.7 Discussion: 121
6.8 Chapter summary: 122

Contents ix

7 Conclusions 125
7.1 Future work : 126
7.2 Closing statement: 128

Bibliography 129

Contents x

List of Figures

1.1 An example Fx array statement.: 3
1.2 Flow chart of the Fx compiler phases.: 4

2.1 Basic operations of the 2D FFT program.: : : : : : : : : : : : : : : : : : 11
2.2 An abstract view of a distributed memory machine.: : : : : : : : : : : : : 12
2.3 Performance issues in message transfer.: : : : : : : : : : : : : : : : : : : 13
2.4 Basic operations of a general message passing exchange.: : : : : : : : : : 20
2.5 Basic operations of the fetch and deposit models.: : : : : : : : : : : : : : 20
2.6 Messages sent in the static and dynamic resource reservation models.: : : : 22
2.7 Schematic operation of connection-based communication.: : : : : : : : : 23
2.8 Communication code in the static, connection-based model.: : : : : : : : : 24
2.9 Program that alternates between two communication phases.: : : : : : : : 25
2.10 Connection-based control of consumption.: : : : : : : : : : : : : : : : : : 25
2.11 Blocked and streamed communication code.: : : : : : : : : : : : : : : : : 28
2.12 Execution time comparing blocked and streamed communication.: : : : : : 29
2.13 Average communication bandwidth on iWarp.: : : : : : : : : : : : : : : : 30
2.14 Example exchanges in the software connection-based protocol.: : : : : : : 32
2.15 Communication bandwidth on Paragon.: : : : : : : : : : : : : : : : : : : 34

3.1 Examples of data placement.: 38
3.2 First alignment example.: 41
3.3 Second alignment example.: 43
3.4 Third alignment example.: 44
3.5 Aligning part ofA : 44
3.6 Reducing the data alignment graph.: 48
3.7 Use of the localdist directive.: 49
3.8 Example communication maps.: 52
3.9 Code that requires loop-carried communication.: : : : : : : : : : : : : : : 57
3.10 Examples of changing logical to physical array assignments.: : : : : : : : 59

4.1 Successive over relaxation (SOR) example.: : : : : : : : : : : : : : : : : 62
4.2 Example entry in the target-comm-list.: 64
4.3 Pseudo-code for the communication code selection algorithm.: : : : : : : : 64
4.4 Effect of code selection on communication performance on iWarp.: : : : : 69
4.5 Normalized effect of code selection on program performance on iWarp.: : : 70
4.6 Effect of code selection on communication time on Paragon.: : : : : : : : 73

xi

List of Figures xii

4.7 Normalized effect of code selection on program time on Paragon.: : : : : : 74

5.1 Example of connections and logical channel usage.: : : : : : : : : : : : : 78
5.2 Communication patterns and interval routing.: : : : : : : : : : : : : : : : 79
5.3 Communication pattern that requires a split interval.: : : : : : : : : : : : : 80
5.4 Multiplexing virtual channels to maximize physical bandwidth use.: : : : : 80
5.5 Disjoint sets of connections and bandwidth limits.: : : : : : : : : : : : : : 82
5.6 Relation between communication resource problems.: : : : : : : : : : : : 85
5.7 Example of function packing problem.: 87
5.8 Function packing algorithm with a duplicated communication pattern.: : : : 88
5.9 Example phase division problem.: 89
5.10 Pseudo-code for the greedy phase division algorithm.: : : : : : : : : : : : 89
5.11 Non-optimal example of using the greedy phase division algorithm.: : : : : 90
5.12 Pseudo-code for the per loop phase division algorithm.: : : : : : : : : : : 91
5.13 Example of the importances of the order of edge contraction.: : : : : : : : 92
5.14 Pseudo-code to calculate the set of minimal phase divisions for patternsPj to

Pj+i. : 93
5.15 The least squares program example.: 97
5.16 The image analysis program example.: 98
5.17 Communication times from function packing algorithm assignment.: : : : : 99
5.18 Normalized execution times from function packing algorithm assignment.: 100
5.19 Greedy algorithm phase division for example programs.: : : : : : : : : : : 102
5.20 A non-optimal routing that avoids hot spots.: : : : : : : : : : : : : : : : : 104

6.1 Synchronization requirements.: 108
6.2 Logical control exchange for deposit model.: : : : : : : : : : : : : : : : : 109
6.3 Timeline of data exchange.: 110
6.4 Code for two dimensional fast Fourier transform (2D FFT).: : : : : : : : : 113
6.5 Timeline for delayed node in an all-to-all communication.: : : : : : : : : : 114
6.6 Code for pipelined 2D FFT.: 115
6.7 Array subsection division during transpose.: : : : : : : : : : : : : : : : : 116
6.8 Timeline that shows array subsections exchanged in an all-to-all communication.117
6.9 Average communication time for one iteration.: : : : : : : : : : : : : : : 120
6.10 SOR pseudo-code using deposit and standard message passing for communi-

cation. : 123

List of Tables

2.1 Major differences between the dynamic and static resource reservation models. 19
2.2 Communication performance characteristics on iWarp and Paragon.: : : : : : 26

4.1 Effect of code selection on total execution time.: : : : : : : : : : : : : : : : 71
4.2 Comparing communication characteristics under OSF and SUNMOS.: : : : : 72

5.1 Summary of the parameters used to define the communication resource problem. 84
5.2 Total execution time from function packing algorithm assignment.: : : : : : 101
5.3 Total execution time comparison for phase division algorithm.: : : : : : : : 103

6.1 genandkill sets for the SOR example.: 112
6.2 in andoutsets for SOR problem.: 113
6.3 genandkill sets for the 2D FFT example.: : : : : : : : : : : : : : : : : : : 114
6.4 in andoutsets for the 2D FFT.: 115
6.5 Augmentedgenandkill sets for the 2D FFT example.: : : : : : : : : : : : : 117
6.6 in andoutsets for 2D FFT program using array subsections.: : : : : : : : : 118
6.7 Program execution speed up due to synchronization elimination.: : : : : : : 121

xiii

List of Tables xiv

Chapter 1

Introduction

Communication is the price of parallelization. Poor communication performance adds to the
parallelization overhead and reduces scalability. Therefore, good communication performance
is important for good overall performance and scalability.

Though the basics of communication are the same on all distributed memory machines,
there are many architectural differences, such as routing support and network interface design
that dramatically affect how communication models perform on different machines. For good
performance, the communication in a parallel application must be optimized for the target
architecture.

It is unreasonable to assume that a human programmer will keep track of the details of
different architectures to reoptimize the communication in an explicit message passing program
for each new parallel architecture. In contrast, parallelizing compilers are better suited to
keeping track of the details of different target architectures. The programmer has a global view
of data movement required in the parallel program, but with communicationanalysis algorithms,
the parallelizing compiler can also derive this global view of communication from data parallel
programs.

For ease of retargeting to different platforms, most data parallel compilers generate com-
munication code for standard message passing interfaces such as PVM[Sun90] or MPI[MPI93].
However, using a common representation for communication limits communication optimiza-
tions much the same way that generating common P-code limits uniprocessor optimizations.
While the communication library can be optimized for each node of the target system, such
message passing libraries do not have global information about the communication patterns,
limiting the possibilities for optimization. Some message passing standards do define interfaces
for common collective communication steps (e.g. MPI), but the library approach does not have
the information about the sequence of communication patterns in the program that is available
to the parallel compiler. With this sequence information, the compiler has more information to
perform resource reservations and other communication optimizations.

Most distributed memory machines can support other communication models in addition
to the standard message passing interfaces. In particular, this thesis examines communication
models that differ in the method of communication resource reservation. Many communication
models (including the standard message passing interfaces) rely on dynamic resource reserva-
tion for flexibility and portability. Other communication systems allow static reservation of

1

Chapter 1. Introduction 2

hardware and/or software communication resources. With application-specific communication
pattern information, a system that supports static communication resource reservation can gen-
erate more efficient communication code than the general message passing system. By using
information about the communication patterns, the compiler has greater freedom for routing
and communication resource reservation. In the dynamic case, the system must avoid deadlock
in the face of unknown communication patterns, so it must follow a deadlock-free resource
allocation strategy.

While alternative communication models enable improved communication performance on
most parallel machines, these models are not appropriate for the human programmer. Unlike the
general message passing models, the alternative models may not be supported on all distributed
memory machines, so the optimized applications may not be easily moved to new machines.
Also, some alternative models require compile-time or global runtime information for correct
operation. If the programmer makes an error, a static resource reservation communicationmodel
does not degrade gracefully. For example, errors will occur on iWarp if there are not sufficient
resources to open all requested connections. By contrast, the dynamic, general purpose message
passing system is designed to rely only on local, runtime information, so the communication
will succeed even with bad compile-time assumptions.

These issues are not problems for a data parallel compiler. The automatic code generator
(once properly specified and debugged) will not make improper compile-time assumptions, so
the robustness in the face of runtime errors is not necessary. The generated communication code
cannot be directly retargeted to other parallel machines, but once the compiler is retargeted, all
code it generates is also retargeted.

1.1 Thesis statement

The data parallel compiler can use information about the target architecture in addition to
information about the required communication patterns to generate and optimize significantly
more efficient communication code for alternative communication models.

1.2 Compiler structure

Other work has concentrated on developing algorithms to use or manage communication in
a connection-basedstatic resource reservation communication model[FSW93, Hin95, Gre93,
War95]. This thesis is more interested in how the choice of the resource reservation strategy
affects communication code generation in the data parallel compiler as a whole.

I explored these effects with a systems approach by building an alternative communica-
tion code generation path. The requirements of the compiler phase guided the problems and
issues I addressed. I implemented the prototype communication generation phases in the Fx
compiler[SSOG93], which operates on a variant of High Performance Fortran (HPF). I concen-
trated on optimizing dense linear algebra problems.

The Fx programmer creates a single-threaded program that operates over a logically global
address space. Figure 1.1 shows an example Fx array statement. This statement stores the
sum of elementsA(i) andA(i+1) into elementC(i) . The Fx compiler is responsible for

1.2 Compiler structure 3

incorporating the necessary distribution and communication code for execution on a distributed
memory machine.

C(1:n-1) = A(1:n-1) + A(2:n)

Figure 1.1: An example Fx array statement.

Figure 1.2 shows the major phases of this compiler. The thesis work is concentrated in
the communication phases from data placement through to dynamic control elimination. For
data parallel programs, the parallelism in the program is guided by the placement of data arrays
over the processing nodes. In thedata placement phase, the compiler uses a combination of
user directives and program analysis to find an assignment of data to processing nodes with a
reasonable tradeoff between parallelism and communication. Thecommunication map phase
uses the data placement information to derive a concise representation of all communication
patterns in the program.

For example, after data placement, the compiler knows that the array statement in Figure 1.1
requires communication before it can execute (assuming that the arrays are distributed). After
the communication map phase, the compiler knows that a nearest-neighbor shift communication
pattern is required.

After the communication map phase, the program intermediate representation (IR) is anno-
tated with communication maps at the locations where communication is necessary. This IR is
input to thesimple communication code selection phase along with information about the
target communication architecture. The compiler uses the communication maps and architec-
ture information to select the best communication method for each communication step. The
IR is annotated with this information for use in the code generation phase.

In the array statement in Figure 1.1, the communication code selection phase decides what is
the best method for performing the nearest-neighbor shift on the target architecture. Depending
on the type of hardware support, different communication models or different communication
algorithms may be most appropriate.

For parallel architectures that enable software control of hardware communication resources,
more sophisticated algorithms are better able to trade between communication implementations
that rely on static resource reservation and implementations that rely on dynamic resource
reservation. In this case theresource management communication code selection phase
can find a better assignment of communication implementations. This resource management
approach relies on information about the control flow of the program to manage the use of limited
communication resources. For example, the array statement in Figure 1.1 may be part of a larger
program, and another statement may require a more expensive all-to-all communication that is
executed more frequently. If there are not enough communication resources to implement the
faster, static resource reservation implementations for both patterns, the resource management
algorithm selects the faster implementation for the more expensive all-to-all communication to
optimize the program’s overall performance.

Optimizations can also be performed on communication implementations in the dynamic
resource reservation model. Communication in this dynamic model relies on synchroniza-

Chapter 1. Introduction 4

tion and/or control messages to ensure that data does not arrive at the destination buffer too
soon. Sometimes explicit control messages are not necessary to maintain this ordering. Instead
data exchanges from previous communication steps can implicitly carry this ordering informa-
tion. Thedynamic control elimination phase uses control flow and communication pattern
information in the program to determine where explicit synchronization is unnecessary.

The computation code optimizations can take place before or after the communication
optimizations. Examples of important computation code optimizations include loop fusing,
loop interchanging, and other standard loop transformations. Loop nests that result from array
assignment statements tend to have the shortest distributed loop on the innermost iteration, so
these loops particularly benefit from loop interchanging.

After communication and computation optimizations have been performed, the code gen-
eration phase translates the IR into a single Fortran 77 node program with communication calls
in the single program multiple data (SPMD) style.

Program

Data dependence

Parallelization

Communication map

Data placement

Computation
optimizations

Simple
communication
code selection

Resource management
communication
code selection

Dynamic control
elimination

Target communication
system description

Code generation

Parallel program

Figure 1.2: Flow chart of phases in a data parallel compiler. The work in the
thesis is concentrated in the phases from data placement through to dynamic
control elimination.

1.3 Thesis contributions 5

1.3 Thesis contributions

The contributions of this thesis can be divided into three main categories: implementation
and experience, algorithm development, and evaluation. The most tangible contribution of
this thesis is the implementation of communication analysis, code selection, and optimization
phases in the Fx compiler. By implementing these phases, I gained insightabout what previously
proposed algorithms work, what additional algorithms are needed, and what optimizations are
truly useful.

I implemented the communication analysis phase utilizing recent work in automatic data
placement algorithms. While there has been much theoretical work in this area, there has been
little empirical evaluation. By implementing a communication analysis phase, I found which
techniques are useful for communication pattern extraction. Based on my practical experience,
I developed a hybrid data placement. This approach enables the programmer to indicate how
key array occurrences should be distributed, and the analysis routines then determine how the
remaining array occurrences should be placed.

The communication patterns that result from the communication analysis phase are distilled
into a concise linear mapping format I developed. Later phases use the structure of these maps to
simplify matching predetermined communication pattern templates and to simplify optimizing
sequences of communication patterns.

Using the results of the communication analysis phase, I developed two communication
selections phases that target communication models relying on eitherstaticor dynamiccommu-
nication resource reservation using information about the target architecture. One code selection
algorithm is quite simple. The other code selection algorithm is more sophisticated and is able
to make more intelligent tradeoffs between resource use and total program performance. These
phases currently generate code for two different distributed memory machines: iWarp[B+88]
and Paragon[Div91].

The resource management code selection algorithm addresses issues of targeting the static
communication resource reservation model. The dynamic control elimination phase addresses
optimizations in the dynamic resource reservation model. The dynamic model requires addi-
tional synchronization in some cases. In other cases, the synchronization is implicitly preserved
from previous communication steps. To improve the performance of the dynamic model, I
developed a data flow algorithm that determines when additional synchronization is redundant.

To evaluate the benefits of these communication selection and optimization phases, I mea-
sured the performance of a set of dense linear algebra programs executing on iWarp and Paragon.
While the set of evaluation programs is not exhaustive, these programs exhibit communication
patterns that are frequently required in this class of programs. These measurements show that
the model selection decisions indeed differ between the two machines, and that the optimiza-
tions do make a substantial difference in communication time and total execution time in most
cases. However, these measurements also show cases where communication optimizations do
not improve performance.

Chapter 1. Introduction 6

1.4 Other communication optimization approaches

Communication optimizations either reduce the amount of required communication or make
required communication steps take less execution time. The communication reduction opti-
mizations try to maximize parallelism while minimizing the amount of required communication.
Several examples of these algorithms are described in greater detail in Chapter 3.

Once the amount of communication has been reduced to only the required communication
steps, the remaining optimizations attempt to optimize the performance of these “necessary” data
exchanges. Again, these optimizations can be divided into two camps. Since most data parallel
compilers target standard communication libraries, most work on communication optimization
deals witharchitecture and pattern independentoptimizations. Blocking or vectorizing mes-
sages is one common example of such an optimization[Ger90, C+92]. By blocking messages,
several smaller messages headed for the same destination are combined into one larger message.
This improves performance particularly when the communication start-up time is very high.
However, if communication start-up time is low, blocking messages may be detrimental to
communication in performance (as explained in Section 2.3.3).

For previous generations of parallel systems, the startup overheads of the communication
hardware were so high that optimizations beyond blocking messages made little difference.
More recent parallel systems require that these communication assumptions be changed. To
take advantage of the speed of these new systems, the programmer or compiler must be willing
to use global information about communication patterns and look at alternative communication
models.

Several groups have started looking at pattern-dependent optimizations. Li and Chen[LC91a]
have described a method to recognize a variety of communication patterns. They propose
matching the communication patterns discovered in a program with optimal implementations
from a target architecture library. Similarly, Gupta and Banerjee [GB92a] describe analysis
techniques to recognize a wider range of communication patterns. In both cases, the work
does not discuss the communication models used in architecture-specific implementations or
describe how the sequence of communication patterns can interact. This thesis integrates those
architecture-specific aspects.

Other groups have also looked at architecture-dependent issues. The stencil compiler for the
Connection Machine is one early example[BHMS91]. The stencil compiler recognizes simple
shift communication patterns and takes advantage of the fact that the CM-2 architecture can
simultaneously send to and receive from the four nearest neighbors.

With his protocol compiler, Felten looks at communication optimization by creating spe-
cialized message passing protocols for specific communication patterns[Fel93]. He also limits
his domain to data parallel programs but describes his communication protocols in a bottom
up fashion as a set of source/destination pairs. The protocol compiler looks at the interactions
of different communication patterns to create safe, specialized message passing protocols. By
contrast, this thesis uses communication maps to present a top down, structured view of com-
munication that makes it easier for the compiler to directly control communication resources.
Instead of working from the standard message passing interface, my communication generation
algorithm attempts to bypass the standard message passing library entirely.

Similarly, Islam’s communication tool set helps programmers create message passing pro-

1.5 Dissertation road-map 7

tocols that are specialized for particular communication patterns[Isl94]. This tool set also
concentrates on communication using a traditional message passing protocol. Instead of using
information from the compiler, the tool set requires information directly from the programmer
about the required communication patterns.

1.5 Dissertation road-map

Chapter 2 begins by presenting background information and thesis assumptions. This chapter
presents an overview of the data parallel compiler model and describes how communication
is incorporated in this model. The high level communication patterns derived in the compiler
model must be mapped to the target architecture, so this chapter also examines the interaction
of communication performance and architecture options. Finally, the background chapter intro-
duces two communication models: the static and dynamic communication resource reservation
models. This chapter defines variations on the two models and describes how these models
perform given different performance characteristics. The performance of these models are
evaluated on two target systems: iWarp and Paragon.

Chapter 3 describes the communication analysis phase of the Fx compiler (theData place-
ment and Communication map phases of Figure 1.2). This phase uses automatic data
alignment and distribution algorithms to determine how data arrays should be placed on the
target array to maximize parallelism and minimize communication. After the data placement
phase, the communication pattern information is distilled into communication maps. When
the communication analysis phase completes, the program graph is annotated with the required
communication maps.

Chapter 4 presents the simple communication code selection phase of the compiler (the
Simple communication code selection phase of Figure 1.2). This phase uses information
about the target system to chose the best communication model for code generation for each
communication pattern. This chapter presents a code selection algorithm and examines the
benefits of this algorithm by presenting program measurements on iWarp and Paragon.

For systems that allow software control of a limited set of hardware communication re-
sources (such as iWarp, ATM switches, and Transputers), a resource management approach to
code selection is preferable. Chapter 5 describes limited communication resources on several
systems. This chapter formalizes the limited communication resource problem and presents
several simple algorithms that trade off resource limitations and performance improvements.
The compiler can use these algorithms to make reasonable decisions about using communi-
cation implementations that statically reserve limited communication resources (shown as the
Resource management communication code selection phase in Figure 1.2). I evaluate the
effectiveness of these algorithms on iWarp, a system that allows software control of hardware
communication resources.

The dynamic resource model can require additional synchronization to ensure correct opera-
tion, but in some cases the synchronization is implicitly maintained by previous communication
patterns. Chapter 6 presents a data flow algorithm that determines when additional synchroniza-
tion is redundant. This data flow algorithm is implemented in theDynamic control elimination
phase shown in Figure 1.2. The effectiveness of synchronization elimination is evaluated on

Chapter 1. Introduction 8

Paragon, a system with relatively costly barrier synchronization overheads.
Finally, Chapter 7 summarizes the dissertation. I describe how this work fits in the current

state of research and suggest ways to extend this work.

Chapter 2

Model and architecture background

Before describing the compiler structure and communication optimizations, this chapter presents
background information on the models used and the architectural issues discussed in this work.
First, the chapter describes the basic data parallel compiler model on which the communication
optimizations are built. Then it presents the main features of communication architectures and
discusses how architectural options affect communication performance. The chapter finishes
by describing two communication models, showing how each model relies on different aspects
of the communication architecture.

2.1 Compiler model

Over the last decade many data parallel languages have been developed and studied, including
Connection Machine C*[RS87] and Fortran[AKLS88], AL[Tse89], Data Parallel C[HQL+91],
DINO[RSW91], NESL[BHS+94], and High Performance Fortran (HPF)[For93].

Programs in the data parallel model exploit parallelism by performing independent op-
erations over collections of data elements. The degree of parallelism in such element-wise
operations is limited by the size of the data set. For most data parallel languages, the parallel
collection is an array or a subsection of an array. In HPF, programs operate with subsections of
arrays calledslices. An array slice is described by a lower bound, an upper bound, and a stride
for each array dimension. For example, the array sliceA(2:n:2) describes the even elements
of arrayA from 2 ton. If slice arguments are missing, defaults of the array range are assumed
for the lower and upper bounds, and 1 is assumed for the stride. Thus,A(:) describes all
elements of arrayA.

Data parallel languages were originally developed for single instruction multiple data
(SIMD) architectures, since one statement in the data parallel program can affect data on
many different processors. Data parallel languages have been developed for SIMD architec-
tures from the Illiac to Thinking Machine’s CM-2. More recently data parallel programs have
been targeted to multiple instruction multiple data (MIMD) architectures. The data parallel
compiler translates the single data parallel program into a node program that is executed in
multiple processes in the single program multiple data (SPMD) style.

The data parallel programming model eases the task of communication analysis for a
compiler by providing a global name space. The data parallel compiler translates each data

9

Chapter 2. Model and architecture background 10

parallel statement into a communication step and a computation step, so the compiler views
the program as a series of alternating communication and computation steps. With the proper
analysis tools [CGST93, KLS90, Who91] or user directives[For93], a data parallel compiler
can discover exactly what communication must take place in each step and describe these
communication requirements as sequences ofcommunication patterns.

A communication patternis a set of node-to-node communications that form a system-
wide communication step.1 These communication patterns are eitherregular or irregular.
The structure of a regular communication pattern is only dependent on the structure of the
program. Many scientific and signal processing programs need only regular communication
patterns[LG94].

A shift is a simple example of a regular communication pattern. Assume the nodes have a
linear ordering. In a “shift right” pattern, each node sends data to its right neighbor, so processor
p sends to processorp + 1. Other examples of regular communication patterns are reductions,
transposes, all-to-all communications, scatters, and gathers. If the communication pattern is
regular, each node performs the same set of communications and requires the same resources
(in the form of bandwidth, buffers, etc.).

The structure of an irregular communication step relies on the particular data set in addition
to the program structure. For example, programs that use finite element methods often encode
the finite element mesh in a separate data array and rely on array indirection to implement
the mesh division. Without pre-running the program or using external knowledge about the
contents of the mesh division array, it is difficult for the compiler to analyze the communication
patterns required in such a program. Also, refinement or load balancing techniques may
change the communication pattern during the course of execution. In some cases with domain
information, even irregular communication patterns may be known at compile time[S+92], and
many adaptive programs have communication patterns that do not change frequently[GLS93].

The assignment of data to nodes defines the amount of parallelism that is available and the
amount of communication that is required in the program. A good data parallel compiler must
carefully trade available parallelism against unnecessary communication overhead. Section 3.1
describes the problem of data placement in greater detail.

For an example of compiler-derived communication patterns, consider a two dimensional
fast Fourier transform (2D FFT). Figure 2.1(a) outlines the data parallel code for this program.
First the program performs 1D FFTs over the columns. Then it performs a transpose and
calculates the 1D FFTs over the new columns. Finally, it performs another transpose to return
the data to its original array. If the columns of arraysA andB are distributed over the processor
array, the parallel loops can be executed in parallel, and the transpose operation requires an
all-to-all communication pattern shown in Figure 2.1(b).

2.1.1 Thesis assumptions

To limit the scope of the thesis problem, I make several assumptions about the compiler. Most
of the issues I omit have been addressed elsewhere or are natural extensions of the thesis results.

1The communication pattern can be defined over virtual or physical processors. Eventually, the virtual processors
are mapped to physical processors, so for the sake of simplicity, this thesis considers only the real communication
between physical processors.

2.1 Compiler model 11

parallel d o i = 1, n
fft(A(:,i))

enddo
transpose(A,B)
parallel d o i = 1, n

fft(B(:,i))
enddo
transpose(B,A)

P

1 2

P-1

(a) (b)

Figure 2.1: Basic operations of the 2D FFT program.

This thesis work augments the Fx compiler[SSOG93] which compiles a variant of High
Performance Fortran (HPF)[For93]. The input language supports array statements, parallel
loops, and directives for data alignment and distribution. The data alignment directives support
the full range of block, cyclic, and block-cyclic distributions. For implementation simplicity,
this work concentrates on block distributions. The optimizations described by this thesis
should naturally extend to cyclic and block-cyclic distributions. The cyclic and block-cyclic
distributions differ from the block distribution in the endpoint data scattering and gathering,
but the communication maps calculated in the communication analysis phase can be directly
augmented to describe the communication patterns for the cyclic and block-cyclic distributions
(Section 3.2.4 describes some of these extensions for cyclic and block-cyclic distributions).
The distribution patterns will differ in the order of packing and unpacking data, but the same
methods should be applicable for calculating and manipulating the communication maps.

This thesis does not address the issues of separate compilation or inter-procedural analysis.
While these are both necessary features for a production compiler, these problems have been
addressed elsewhere[C+87, A+88, HHKT92, PS92, RG89] and are orthogonal to the main
issues of this thesis.

This thesis work concentrates on optimizations in the “pure” data parallel model. Combining
task and data parallelism has generated a lot of interest recently[SSOG93, Fos94]. Data
parallelism alone requires scaling a problem to increase parallelism. However, in the real
world, it is not always practical to scale the problem size. By dividing the machine between a
set a cooperating parallel tasks, tasking can add another dimension of parallelism.

Finally, this thesis concentrates on optimizations for regular communication patterns. Many
important problems require communication patterns that cannot be analyzed at compile time,
but compiler techniques for addressing irregular communication patterns at runtime (much
less compile-time) are still an active research topic[GLS93, Sti94, SAS92, BW93]. Once we
understand how to retarget the simpler regular communication patterns to other communication
models, perhaps similar techniques can be used at runtime for irregular communication patterns.

Chapter 2. Model and architecture background 12

2.2 Communication architecture

Details of the communication architecture affect communication performance. Before we
can hope to optimize communication, we must have a good understanding of the interactions
between communication architecture design and communication performance. This section
presents a generic, distributed memory machine model and defines several key communica-
tion performance characteristics. Then it describes implementation options for several key
communication architecture choices and discusses how the implementation specifics affect the
communication performance characteristics.

2.2.1 Distributed memory architecture

We begin the discussionof communicationarchitecture choices by defining a model of a generic,
distributed memory computer. The major units of this model are shown in Figure 2.2(a). It
models both distributed shared memory systems and private memory systems.

Router

Node

Router

Node

Interconnection
Network

Communication
Unit

Memory

Computation
Unit

Network
Interface

(a) (b)

Figure 2.2: An abstract view of a distributed memory machine. (a) Major units
of the generic machine. (b) Elements of a generic node.

All distributedmemory systemsare made of sets ofnodes, routers, andcommunication links.
Figure 2.2(b) shows the generic components of a node. The node contains thecomputation
unit and the memory of a normal uniprocessor system. The node also contains support for
communication in thecommunication unit, which is responsible for injecting and extracting
messages.

The routing units and the communication links form the interconnection fabric of the
distributed memory system. The links are reliable, high speed networks. The routing units
interpret message headers to forward the messages along the appropriate link to their final
destinations.

With some variations, today’s distributed memory systems contain these basic components.
In some systems, the computation and communication may be handled in the same unit (e.g.
Intel iPSC), or communication and routing may be implemented by the same unit (e.g. iWarp).
Each node can also contain multiple computation units (e.g. Cedar[K+93], Paragon-MP3 (a
three processor version of Paragon)), so each node can be thought of as a bus-based, shared

2.2 Communication architecture 13

.

.

.

Src
node

L

SO

SO

node
Dst

(B-1)xT

Figure 2.3: A sketch of a message transfer divided by the different performance
issues. Time runs from top to bottom.

memory architecture. The number of routing units per computation node varies between
different topologies. There may be one routing unit for each node as in the Paragon; there may
be many routing units for each node as is the case for multi-stage networks; or there may be
many nodes for each routing unit as is the case for small cross-bar networks.

The particular topology of the distributed memory system affects the degree of network
congestion and message latency. For this discussion, we ignore the specific system topology,
because the same qualitative performance issues arise regardless of specific topology.

2.2.2 Communication performance characteristics

Given an algorithm and any distributed memory system, there are several performance char-
acteristics that must be identified before the algorithm can be implemented efficiently. By
abstracting away from the machine to these performance issues, several research groups have
tried to create simple and realistic execution models for developing parallel algorithms (e.g.
PRAM[FW78], bulk synchronous[Val90], and LogP models[CKP+92]).

Using this previous work as a base, we examine four communication performance char-
acteristics: latency (L), communication start-up overhead (SO), bandwidth (BW), and overlap
loss (OL). Figure 2.3 labels the time line of a message exchange with these parameters. Latency
(L) is the time from when the first word of a message leaves the source node to when it reaches
the destination node. Startup overhead (SO) is the time from the start of communication to the
time the first word of the message is injected to or extracted from the network. This includes
software overheads, such as interrupt handler or message polling, buffer selection, and buffer
copying delays. Bandwidth (BW) is a measure of the rate communication between two nodes.
We also discuss the inverse of bandwidth, the per byte transfer time (T). The total time to send
or receive aB byte message is 2� SO + L+ (B � 1)� T .

The computation unit may be involved in the communication even after the first word of the
message is injected (extracted). For example on iWarp, the computation unit can directly inject
data at the full network bandwidth. Sometimes direct computation unit control is preferable
to using a direct memory access (DMA) controller or communication co-processor, but if the
computation unit is injecting (extracting) data, it cannot be performing other computations; the

Chapter 2. Model and architecture background 14

program loses the opportunity to overlap communication and computation. The overlap loss
parameter (OL) is a measure of the time the computation unit is performing communication
and quantifies this loss of opportunity for overlap. In the example shown in Figure 2.3, the
OL measure for the sending node is eitherSO if the computation unit is not injecting data, or
SO +B � T if the computation unit is injecting data.2

These four parameters adequately describe endpoint costs and transmission costs assuming
there is no contention for network resources. A message traveling through the network can
temporarily delay other messages, causing congestion and reducing the effective bandwidth.
To be complete, the abstract communication model must also include a measure of network
congestion, but network congestion is dynamic and quite hard to predict. Therefore, no
static performance model adequately describes network congestion, and most understanding of
network congestion comes from empirical simulations and experiments.

2.2.3 Implementation options

There are many implementation choices to be made when moving from the generic machine
model to a real system. This section outlines several of the key decisions and describes how the
implementation choices affect the four performance characteristics identified in the previous
section.

Transfer granularity The communication subsystem must make choices about what limits
to place on the amount of data to transfer as one unit. In the simplest case, the communication
subsystem can transfer the same amount of data in each message, usually a small number of
words. This is the approach used by ATM switches, the CM-5[L+93], and most distributed
shared memory systems. While this approach is simple, many programs want to send larger
messages, so packetization software or hardware must be added. This adds to the complexity
of the system and potentially adds to SO and/or OL.

Other systems allow large packets by defining a large upper bound on packet size. Messages
smaller than the bound are sent directly, and larger messages are divided into several packets. In
this approach not all messages are the same size, but there is a bound on the message size. Under
OSF1, the Paragon takes this approach by setting a system-wide packet size limit. Assuming a
packet size ofP , the time to send aB byte message isdB=Pe(SO + L+min(P;B)� T).

To minimize the impact of SO, the system designer wants a large packet size, but in
congested communication patterns, small packets are better able to use the system’s bandwidth
(BW). While a packet uses router resources it prevents other packets from making progress
through the network. Smaller packets release router resources more frequently, so other packets
have a chance to make progress.

Unbounded, variable length packets arestreams. Most systems that use streams actually
have hardware to interleave multiple streams over a single physical bus on a word by word
basis, i.e. support message packetization in hardware. Logical channels of the iWarp, virtual
channels implemented in the T9000[MTW93], and virtual connections implemented for ATM

2This measure of OL is a simplification. Even if a separate unit (e.g. a DMA unit) is responsible for injecting
the message, the computation unit will not be able to run at full speed in most architectures, so the true OL measure
should be greater than SO. The injecting unit will steal memory bandwidth or bus bandwidth in most systems.

2.2 Communication architecture 15

networks are examples of these interleaved streams. This option requires additional hardware
support, but combines the best of the low overhead of large messages and the good congestion
performance of small messages.

Transfer method Once the transfer granularity is selected, there are several options for
transferring data over the network.

Store and forwardis the simplest option. The entire packet is buffered at each router which
increases latency. This approach is used in the earliest distributed memory systems and in
systems that use small, fixed size packets. For small, fixed-size packets, the entire message
can be stored in hardware buffers at the intermediate routers, but large packets require more
memory at each hop. Unless the memory buffering speeds can match network bandwidth, store
and forward will reduce effective bandwidth.

Wormhole routingis used by most current systems that transfer large or variable length
packets. In wormhole routing, portions of the packet may be stored in buffers on several
routers, so the message stretches out like a worm on the network. This reduces the overhead of
waiting for the entire message ateach router. One packet is capable of blocking many messages
in this scheme, because it can consume resources over several routers. This increased blocking
can increase network congestion and reduce effective bandwidth.

Virtual cut-through[KK79] andsegmentrouters[Kon94] have been proposed as a compro-
mise between the low overhead wormhole routing and the low congestion store and forward. In
virtual cut-through routing, the packet follows a wormhole routing scheme while it can make
forward progress. When it cannot reserve resources on the next router, the packet is gathered
into the current router, releasing resources on all but one router. This works well for short
messages but requires large buffers on the routers for large messages. Segment routers divide
message traffic into short and long messages and use separate routing methods and resource
pools for each class. It uses wormhole routing for long messages and a form of store and
forward routing for short messages.

Synchronization During communication there must be some degree of synchronization be-
tween nodes and routers from the source node to the destination node. Nodes and routers must
negotiate to ensure that there is space in the next router for the data. For most high-performance
interconnection networks, this synchronization or flow control is handled in hardware. For
example on iWarp, two wires are added to the data path to signal when data is queued and
dequeued on the the neighboring node.

For more distant nodes or less expensive systems, additional control wires can be pro-
hibitively expensive. In this case, control messages and communication protocols are used to
provide reliable service. The Transputer T9000 and C104 routing chips use end-to-end flow
control for each virtual channel and avoid the need for additional control wires. No additional
words are sent from the virtual channel until the currently outstanding word is acknowledged.

These alternatives for link-level flow control affect the network efficiency. Hardware-based
flow control does not consume any network bandwidth but requires additional wires and circuits.
Software-based flow control uses some of the data bandwidth for flow control.

At the application level, inter-node synchronization may also be required. Communicating
nodes must negotiate to ensure that data is not sent before it is ready to be received, either by the

Chapter 2. Model and architecture background 16

application or by system software. This synchronization is dependent on the communication
protocol, so the issues of application-level synchronization are discussed in greater detail in
Section 2.3.

Injection/extraction point Decisions in the design of the interface between the computation
unit and the network are very important to system performance. One of these interface issues
involves where to insert or extract data from the network into the memory system. It is feasible
to inject data into the network from any point in the memory hierarchy, and there are examples
of designs and systems that use each of these levels.

The simplest option is to move data between main memory and the network. Since the
network interface is memory-mapped, communication looks like loads and stores to the com-
putation unit. Therefore, commodity processors or DMA’s can be used as the communication
unit with no modifications. Memory-mapped communication is simple, but it can add to the
communication overhead (SO). If the computation unit directs communication, it must use load
and store operations with the same overheads as loading and storing to main memory.

At the other extreme, the injection/extraction point can be mapped into the register space.
This requires a major change to the design of commodity processors, but it enables very low
overhead access to the network. iWarp uses register-mapped communication queues to inject
data produced by the computation unit. Such low overhead access is required for systolic
algorithms, and low overhead access gives the communication unit more options for data
extraction and injection.

Placing the injection/extraction point at the second-level cache, trades off hardware modi-
fications against efficiency[HJ92]. Many distributed shared memory designs use a cache-level
network interface (e.g. Flash[K+94] and Typhoon[RLW94]).

Injection/extraction agent In addition to deciding where in the memory hierarchy to inject
and extract data, the system designer must decide what type of agent to use to actually inject
and extract data from the network.

First generation systems used a single processor for both data injection/extraction and
computation. While sharing a single processor reduces hardware requirements, the cost of
switching between the communication and computation threads adds to the startup overheads
(SO). Also, using a single processor for both communication and computation eliminates the
possibility of overlapping communication and computation.

A DMA controller can act as a simple communication agent. After the computation unit sets
it up, the DMA can move data between the network and memory without consuming additional
resources of the computation unit. However, DMAs can only move contiguous blocks of data
or single, strided sections of memory. This is often sufficient for explicit message passing
programs, because the human programmer is normally cognizant of data layout in the program
and will restructure the problem to simplify data transfers. However, many programs generated
by parallelizing compilers must communicate data scattered over memory. Communicating this
scattered data either requires first packing it into a contiguous piece of memory (requiring an
additional copy) or setting up the DMA foreach small contiguous piece of memory (paying the
startup overhead of the DMA many times). Either option adds to SO.

2.2 Communication architecture 17

Another option is to use a second commodity processor as the communication agent.
This approach is used by Paragon; a second i860 is included in each node to take care of
communication. However, the second commodity processor is not close to the network interface,
so it must still rely on DMA controllers to move data at the full network bandwidth. The second
processor can take care of the address calculation, buffering, and DMA startup overheads,
decreasing the OL penalty on the main processor.

Machines that require fine-grained, low-overhead communication such as iWarp and Trans-
puter systems use specialized communication co-processors. Designs for distributed shared
memory systems either use hardwired engines (e.g. Dash[L+92]) or specialized programmable
engines (e.g. Flash and Typhoon) to control remote accesses.

Routing control Routing decisions determine the amount of effective system bandwidth.
Systems differ in how routing is controlled. Many systems have a single routing strategy
hardwired in the routing unit, so routing decisions can be made quickly. However, to place
the routing strategy in hardware, it must be simple and general, and the “best” routing strategy
may change based on the current traffic characteristics affecting the amount of usable network
bandwidth.

Some systems allow semi-programmable routing strategies. For example, iWarp and ATM
networks allow source controlled routing. Simple routing information is stored in the message
header, so the source node can control which route the message should take. For this approach
to avoid deadlock conditions possible in a general message passing pattern, the source nodes
must follow a system routing policy.

The Transputer C104 routing chip also allows some programmability in the routing strategy.
The routing chip uses a routing table which can be loaded by the application. The C104 routing
table is discussed in further detail in Section 5.1.2.

Routing strategies Regardless of how flexible the routing control is, the system must choose
at least one routing strategy. Most systems use simple,obliviousrouting strategies. For example,
the mesh-connected Paragon systems uses e-cube or row then column routing. In a oblivious
routing strategy, the same route is always used between a particular pair of nodes.

Oblivious routes are repeatable and relatively easy to implement, butadaptiverouting strate-
gies may provide better use of network bandwidth. With an adaptive routing strategy, a number
of routes may be used between a particular pair of nodes depending on local traffic conditions.
There has been much study and simulation work on adaptive routing algorithms[GPBS94], but
few current machines actually implement adaptive routing.

While adaptive routing can improve bandwidth usage, it destroys any assurance that mes-
sages sent between a pair of nodes will arrive in the order sent. This out of order message arrival
increases endpoint overheads (SO) for re-ordering messages. If the program exchanges logically
larger chunks of data than the system message size, either additional addressing information in
the message headers or message re-ordering is required.

Chapter 2. Model and architecture background 18

2.2.4 Thesis assumptions

By distributed memory machine, I mean a machine where local memory can be accessed
substantially faster than non-local memory, regardless of the method of remote access. I also
assume that the system is either dedicated to running a single parallel application, or the system
uses gang-scheduling to time-share the system.

By concentrating on dedicated systems (dedicated either permanently or on a time-sliced
basis), this thesis can avoid many of the issues brought up by operating system interactions. If the
parallel system is shared between multiple applications either by space-sharing or time-sharing
nodes, the operating system must manage shared system resources to insure the applications
execute safely and fairly. On such systems, the network interface is a shared resource. The
operating system must guarantee that messages coming in from the network reach the correct
process. The operating system must also guarantee availability by ensuring that one process
does not consume all available bandwidth at the cost of other processes.

These shared network resource management services can slow network communication by
adding to communication startup overhead and hiding the details of the communication archi-
tecture. There has been some work to reduce the operating system communication overhead by
shared user/kernel buffers (e.g. Fbufs[DP93]) and application-specific libraries (e.g. [MB93]).

The specific topology of the target machine is not important, but it is important that this
topology is known at compile-time, so the compiler can use the topology information in its
optimization decisions.

The thesis assumes the nodes are connected by an interconnection network with the follow-
ing characteristics:

� The routers use wormhole or virtual cut-through routing not simple store and forward.

� The network is dedicated and reliable.

� The communication bandwidth in and out of a node and a node’s computation speed are
roughly balanced.

These network assumptions are what separates multi-computers from networks of workstations.
Some claim that the coming of ATM switches and gigabit networks will make this distinction
less clear over time.

The thesis also assumes that routing decisions are oblivious. Adaptive behavior limits the
amount of compile-time analysis and reduces the strength of the assumptions that can be made
about the communication patterns.

2.3 Communication models

The design of the communication system affects the performance of different styles or models
of communication. These communication models can be described and separated along many
dimensions. Differences in communication resource reservation can have a great effect on com-
munication performance, so this thesis concentrates on differentiating communication models
by their means of reserving communication resources. In particular, this section discusses the
extreme models ofdynamicandstaticcommunication resource reservation.

2.3 Communication models 19

Supports? Static Dynamic
Communication resource reservation Yes No

Program controlled routing Yes No
Arbitrary runtime communication patterns No Yes

Table 2.1: Summary of the major differences between the features supported
by dynamic and static resource reservation.

Table 2.1 highlights the major differences between these models. With static resource
reservation, the communication system can take advantage of knowledge about communication
patterns to reduce network contention and communication startupoverheads. While the dynamic
resource reservation has the flexibility to handle any arbitrary communication patterns. Each
approach has its advantages, and different situations are best suited to different communication
models.

Of course, this discussion is addressing extreme cases of managing communication re-
sources. Many communication models or protocols rely on dynamic techniques at one level and
static techniques at another. For example, the TCP is a connection-based protocol. It statically
reserves buffers for each open connection, but TCP is frequently implemented on packed-based
hardware that relies on dynamic techniques to reserve and release hardware resources for each
packet of data exchanged. Section 2.3.3 discusses a hybrid implementation on the Paragon in
greater detail.

2.3.1 Dynamic resource reservation

Most distributed memory systems support a message passing package that performs general
communication such as the PVM library[Sun90] or Intel’s NX message passing library[PR94].
These message passing systems are examples of communication that rely on dynamic resource
reservation. No resources (e.g. bandwidth, software and hardware buffers) are reserved between
message exchanges. Here we introduce several dynamic communication models. See [SSO+95]
for a more detailed discussion and comparison of these models.

In thegeneralmessage passing model, both source and destination nodes explicitly make
communication requests. A send statement on one node logically matches a receive statement
on another node. By matching explicit send and receive statements, the message passing model
guarantees a partial order; before one receive can complete, the matching send must occur. In
addition to data transfer, the general message passing model provides application-level node
synchronization.

Figure 2.4 depicts the control flow and buffer requirements for a general message passing
data transfer; the vertical axis represents time. An incoming message must be buffered in a
preallocated system buffer at the receiver node if the receive operation has not been invoked to
accept the data.

The message passing library may also buffer messages on the sending side. With sender
side buffering, the send call can return before the data has actually been sent, and the sending

Chapter 2. Model and architecture background 20

program can safely change data in the array that was just sent. For simplicity, we concentrate
our discussion of general message passing on receiver-only buffering.

.

.

.

Src
node

System
buffer

node
Dst

Receive(B)

Send(A)

Figure 2.4: A timeline of a general message passing exchange. Time moves
from top to bottom.

The depositand fetchmessage passing models separate the data transfer issues from the
application synchronization issues. Logically, the fetch and deposit models are duals of each
other. In the fetch model, the destination controls the data transfer. The destination node sends a
fetch request to another node, containing the addresses of the data elements to fetch. The source
nodes replies to fetch requests by sending the requested contents of its memory unconditionally.
Figure 2.5(a) shows the relevant steps in a fetch model data transfer. The destination node sends
a request for items to the source node. The source node replies with the requested data. When
the data arrives, the destination node stores the incoming data in its final location.

Src
node

Send A

.

.

.
Store into B

node
Dst

Fetch(A,B)

.

.

. Store into B

Src
node node

Dst

Deposit(A,B)

(a) (b)

Figure 2.5: Basic operations of the (a) fetch and (b) deposit models.

In the deposit model, the source node controls the transfer. Only one message is required
to transfer the data together with its destination address(es). The destination node then deposits
the contents of the message based on the addresses provided. Figure 2.5(b) depicts the relevant
steps in a deposit model data transfer. The source node sends the data together with the remote

2.3 Communication models 21

address(es). Then the destination node accepts the transfer and deposits the data directly into
its final destination, without further involvement or computation on the destination node. The
destination node requires a mechanism to determine when the data has been updated. Generally,
a predetermined semaphore or update variable is also updated by the deposit message handler
to indicate that the target buffer has been updated.

The fetch and deposit models only define the data transfer mechanism; they do not define
the sequencing mechanism. Without an additional sequencing mechanism, data may be fetched
before it has been computed, or data may be deposited before the destination is finished with
the old data values. This sequencing information can be communicated through additional
mechanisms such as control messages, barrier synchronization, or a tree of messages.

Depending on the sophistication of the communication unit, dynamic communication may
require additional packing and unpacking steps. If DMA controllers are used for the commu-
nication unit, only contiguous or single-strided memory patterns can be transferred. Any more
complex memory access patterns must first be packed into contiguous locations in memory
adding to the startup overhead. If the communication unit has direct access to the network, it
can use an index array or local address calculations (i.e. data chaining[SG95]) to directly inject
or extract data in irregular memory access patterns.

2.3.2 Static resource reservation

Static resource reservation is an alternative on many distributed memory systems[FSW93]. A
static resource reservation model has the potential for more efficient communication by allowing
resources to be reserved for several messages.

Generally, resources are reserved along along-lived connection. The resources are reserved
once when the connection is initiated, so the cost of the resource reservation can be amortized
over many data exchanges. Once the connection is set up, data movement over that connection
requires no software intervention by any of the intermediate nodes. Wormhole and virtual
cut-through routing also give these advantages to the dynamic resource reservation model, but
the connection must be created and destroyed for each message. Long-lived connections can
be used for multiple messages, so the start-up overhead (SO) is better amortized. Figure 2.6(a)
shows messages sent on two long-lived connections. The resources for these messages are
reserved initially at time T0. Then the data (shown as the shaded region can be sent over the
connections for many time steps. By contrast, Figure 2.6(b) shows the same data exchanges
in the dynamic resource reservation model. The resources must be reserved before each data
exchange and released after each data exchange.

The program can communicate over the long-lived connection using send and receive
functions similar to those used in the general message passing model. The deposit and fetch
protocols can also be implemented over a static, connection-based model, but the connection-
based model does not require buffering, so the benefits of the deposit and fetch protocols are
not as apparent.

Regardless of the sending and receiving protocols, the overheads of the connection-based
communication are far lower, since the communication resources have been statically assigned
to the connection and do not need to be assigned with each data exchange. This lower overhead
makes it reasonable to send smaller messages.

Chapter 2. Model and architecture background 22

1 2

3
4

1 2

3
4

1 2

3
4

Ti

Ti+1

T0

1 2

4

1 2

43

3

1 2

3
4

1 2

3
4

Ti+3

Ti+2

Ti+1

Ti

(a) (b)

Figure 2.6: Messagessent in the static (a) and dynamic (b) resource reservation
models. In the static, connection-based model, resources are reserved at time
T0 for potentially many data exchanges. In the dynamic model, resources are
reserved and released for each data exchange. Data is shown as the shaded
regions.

Figure 2.7 shows the communication steps in one data exchange over a statically reserved
connection. The connection-based model enforces a strict synchronization between the sending
and receiving nodes. No data is sent until the corresponding receive is made. Depending on
the implementation, the sending node keeps track of when the receiving node requests data
through link level hardware flow control or software control messages. Section 2.3.3 describes
the details of a hardware-based and a software-based connection implementation. Since the
connection model enforces this strict synchronization, data communicated over connections
never needs to be buffered in system buffers.

This strict synchronization between sender and receiver places a greater burden on the

2.3 Communication models 23

Send(array1, len)

Receive(array2,len)

Store into array2

Figure 2.7: Schematic operation of connection-based communication.

programmer to ensure that each node’s communication schedule is deadlock free. For example,
four nodes with connections shown in Figure 2.8(a) executing the code in Figure 2.8(b) will
deadlock, because all nodes will stall waiting for the corresponding receive to be made. The
code in Figure 2.8(c) will work since one node makes the receive call first.

Some systems allow non-blocking send and receive operations. Requests to send and
receive data are queued, and the communication function returns before the communication has
completed. In this case, several communication requests can be outstanding. Non-blocking
calls can be implemented in the dynamic and static models, and non-blocking operations enables
greater freedom in the scheduling problem. The code in Figure 2.8(d) shows a deadlock free
program that uses non-blocking receives.

Each node of a system has a limited number of resources that can be statically assigned to
connections, so only a limited number of connections can efficiently exist simultaneously. The
specific communication resources are machine dependent. Some examples of communication
resources are hardware buffers, software buffer space, or router space. Some systems may
support an effectively infinite number of connections, but it is likely that the machine will
support only a limited number of connections well. For example, ATM networks may only
make quality of service guarantees to some subset of active connections.

One important observation is that programs go through differentphasesof communication
patterns. When a particular communication pattern is not in use, its resources can be used
for other patterns. Thus, the communication resources can be time-shared. This network
phase switching is analogous to reusing registers via a context switch on a multiprogrammed
uniprocessor. For example, Figure 2.9 shows a program that alternates between a phase that
communicates using a hypercube pattern and a phase that communicates over a grid pattern.

Therefore, it makes sense to define sets of connections that operate in the same portion of the
program in the same phase[Hin95]. At runtime, the program performs aphase switchto move
between the phases. In a phase switch, the system performs a system-wide synchronization,
reclaims the communication resources, and then instantiates a set of pre-computed connections
for the new phase.

Chapter 2. Model and architecture background 24

(a)

send block(out port, block)
receive block(in port, block)

(b)

if (my node id == 0)
receive block(in port, block)

send block(out port, block)
if (my node id != 0)

receive block(in port, block)

(c)

receive block nb(in port, block, &status)
send block(out port, block)
while (status == 0)

(d)

Figure 2.8: Three node programs that exchange data over connections shown
in part (a). Code (b) will deadlock because all nodes block on the send. Code
(c) breaks this deadlock by introducing asymmetry on node 0. Code (d) breaks
the deadlock by using non-blocking, background receive operations.

2.3 Communication models 25

Sort

SOR

Figure 2.9: Program that alternates between two communication phases.

Switching between communication patterns is conceptually simpler than general connection
creation, because all nodes open and close connections at a common point in the program. The
compiler can statically assign resources to all connections of the phase in one step. Alternatively,
connections can be created and destroyed individually, avoiding the distinct phase switches, but
in this case, the compiler must ensure deadlock free routing by verifying that all possible sets
of connections can co-exist

With dynamic resource reservation, routes must be limited to avoid deadlock[Str91]. With
phases, connections are routed off-line with global knowledge, so they are not subject to these
routing limitations. Therefore, the statically reserved connection model allows greater freedom
for routing connections.

With static resource reservation, a single node can have several connections open at the same
time. With several connections, a program can selectively read from different connections (and
therefore different source nodes). In the dynamic model, the destination must service all data
as it arrives, but in the connection-based model, the destination controls the communication, so
it can chose to only service data from one connection and ignore data on the other connections
until a later point in the program. For example in Figure 2.10, node 1 can chose to first process
the data from node 0, before working on the data from node 2.

0 1 2

Figure 2.10: Node 1 can control whether to process data from node 0 or node 2 first.

Chapter 2. Model and architecture background 26

iWarp
Connection

Connection and DMA Deposit General
Start-up overhead (SO) 0 5 �s 10�s + sync 20�s

Per byte transfer (T) 0.025�s 0.025�s 0.025�s 0.025 or 0.05�s
Latency T �D T �D T �D T �D

(a)
Paragon

Connection Deposit NX (general)
Start-up overhead (SO) 50�s 50�s + sync 50�s

Per byte transfer (T) 0.00625�s 0.00625�s 0.00625 or 0.05�s
Latency T �D T �D T �D

(b)

Table 2.2: Performance characteristics of communication on iWarp(a) and
Paragon(b), whereD is the number of links from the source to the destination
node. The per byte transfer time for the general message passing case depends
on whether the message must be buffered. The deposit startup overhead includes
synchronization to ensure that messages do not arrive too soon.

2.3.3 Model implementations

To make the differences between these communication models more concrete, this section de-
scribes implementationsof the dynamic and static resource reservation models on iWarp[B+88]
and Paragon[Div91].

iWarp and Paragon are two substantially different parallel architectures. From the view of
communication models, these systems differ on two main points:

� Software can control resource reservation on iWarp. Resource reservation strategies are
hardwired on Paragon.

� iWarp supports program-controlled routing. Paragon routing control is hardwired in the
routing chip.

Models on iWarp

iWarp is a distributed memory, parallel computer developed by Intel and CMU. Table 2.2(a)
summarizes the performance characteristics of the static (connection-based) and dynamic (de-
posit and general) resource reservation implementations on iWarp.

The nodes in the system are connected in a two-dimensional torus by 40 MB/s busses. Each
node of an iWarp system consists of two units: a computation and a communication agent. The
two units are tightly integrated since they are implemented on the same chip. The computation
agent is a loads/store architecture that operates at 20 MHz. It can execute long instructions that
keep all three functional units busy.

2.3 Communication models 27

For this work, the communication agent is the more interesting of the two agents. The
communication agent was designed to support program-directed, systolic communication and
message passing communication[B+90]. The low latency systolic-style communication is
made possible by hardware support forlogical channels. The logical channels are in effect
register-mapped network queues, so data from the network can be read and written directly by
the computation agent by reading and writing registers.

The program can control how the logical channels are configured, so the static, connection-
based model maps naturally to the logical channel hardware. Logical channels can be chained
together to form reconfigurable direct connections between nodes not physically adjacent in the
system. Once the logical channel connection is set up, the connected nodes can communicate
using a zero-overhead protocol. The network queue can be written or read once every two
cycles. Logical channels reserve bandwidth. When data is traveling over the channel, it need
not wait for bandwidth, but when the channel is inactive, its bandwidth is available for traffic
on the other channels.

Since the node has direct access to the network, the overhead of accessing the network is very
low. Therefore, the program can effectively send data without first packing it into contiguous
memory locations. For some communication patterns, the connection-based implementation
requires no intermediate data buffering.

For cyclic data distributions, this low-overhead communication can nullify the benefits of
some common architecture-independent optimizations such as blocking or vectorizing com-
munication. This optimization combines many small messages into fewer, larger messages
(generally by pulling communication out of loops) which reduces the number of communica-
tion startups.

If communication startup is zero as is the case for communication over statically reserved
connections on iWarp, it may be better to leave communication in the loop. With communication
in the loop, data canstreamthrough a node, and the program can use data directly from the
network without storing it in memory. After moving communication out of the loop, the
program must store the data in memory possibly performing more memory accesses.

Consider the sequential loop in Figure 2.11(a). AssumeA(i) andB(i) are allocated to the
same node, and the arrays are cyclically distributed. Blocking up all the communication before
the loop results in code for each node as shown in Figure 2.11(b). Leaving the communication
in the loop results in code for each node as depicted in Figure 2.11(c).

The blocked version reads or writes 2nwords from the network and 4nwords from memory.
The streaming version (with communication in the loop) also accesses 2n words from the
network but only 2nwords from memory. Figure 2.12 shows total execution time for blocked and
unblocked versions of SOR and LU decomposition. These figures show that there is some benefit
to leaving communication in the loop for programs like SOR. Since LU decomposition spends
proportionately more time in computation than communication, the streaming versus blocking
choice does not effect its performance as much. Vectorizing or blocking communication is
still beneficial for many cases where the program eventually stores the communicated data to
memory.

iWarp also supports a deposit message passing implementation[SSO+95]. The iWarp
communication agent has eight DMA-like communication engines that are capable of moving
data between memory and the network. These DMA engines can communicate contiguous

Chapter 2. Model and architecture background 28

do i = 1,N
B(i) = f(A(i+1))

(a)

send block(left, A, n)
recv block(right, ashift, n)
do i = 1,n

B(i) = f(ashift(i))

do i = 1,n
send(left, A(i))
B(i) = f(receive(right))

(b) (c)

Figure 2.11: Comparison of blocked (vectorized) and unblocked communica-
tion. Original sequential code in (a). Blocked communication code in (b).
Unblocked communication code in (c).

blocks of memory or do simple strided accesses. The message passing system uses two of
these DMA engines: one for receiving messages and another for sending messages. The iWarp
deposit library uses oblivious, e-cube routing. This library can use a torus router to utilize all
the links of the network or a surface router to lower the resource requirements.

The deposit call starts a sending DMA operation. When a deposit message arrives, an
interrupt handler is called that sets up the corresponding receive DMA operation. The destination
node expects a certain number of messages in each communication step, so the deposit interrupt
handler also increments a predetermined message counter.

The static resource reservation communication model yields performance benefits as a
results of several factors. The most obvious performance improvement is a result of improved
resource reservation. Figure 2.13(a) shows the benefits of resource reservation by comparing
the bandwidth of deposit message passing and connections between two nodes on iWarp. The
line labeleddeposit measures the cost of the deposit transfer and the barrier synchronization
on the 64 node system that is required to ensure data is ready to be received.

With static resource reservation, the connection-based model can also take advantage of
program-controlled routing to better schedule use of the interconnection network. The routing
control is particularly important when executing dense communication patterns such as all-to-
all communication. With routing control and the static resource reservation, different all-to-all
communication algorithms can be used for superior performance. The all-to-all message passing
implementation on a 64 node system reaches 500 MB/s aggregate bandwidth, while the fastest
connection-based implementation reaches 2.5 GB/s[HKO+94] (as shown in Figure 2.13(b)
phased and 2 stage are two connection-based alternative all-to-all implementations).

Models on Paragon

The Paragon is another distributed memory system developed by Intel. Table 2.2(b) summarizes
the performance characteristics of three communication libraries on the Paragon using the

2.3 Communication models 29

SOR

■

■

■

■

■

■

■

■

■

●

●

●

●

●

●

●

●

●

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 200 400 600 800 1000 1200 1400

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

N

■ Blocked

● In loop

(a)

LU decomposition

■ ■ ■ ■ ■ ■
■

■
■

■

■

■

● ● ● ● ●
●

●
●

●

●

●

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

N

■ Blocked

● In loop

(b)

Figure 2.12: Total execution time comparing blocked communicationwith com-
munication left in the loop (i.e. streamed) for SOR (a) and LU decomposition
(b). The programs operate on cyclically distributed data.

Chapter 2. Model and architecture background 30

iWarp: Single link

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

0

5

10

15

20

25

30

35

40
B

an
dw

id
th

 (
M

B
/s

)

Message size (bytes)

Connection

Deposit

(a)

iWarp: All-to-all

0.25 0.5 0.75 1 1.5 2 3 4
0

200

400

600

800

1000

1200

1400

1600

1800

A
gg

re
ga

te
 b

an
dw

id
th

 (
M

B
/s

)

Message size (Kbytes)

Connections: phased

Connections: 2 stage

Deposit

(b)

Figure 2.13: Average communication performance on iWarp for statically and
dynamically reserved implementations for (a) single link bandwidth and (b)
all-to-all aggregate bandwidth on 64 nodes.

2.3 Communication models 31

SUNMOS runtime system[MMRW94]. Under SUNMOS, all three communication libraries
use the same basic communication transfer functions. The differences between the libraries are
due to differences in the system calls and the message handler routines.

The nodes of a Paragon system are connected in a two-dimensional mesh by 200 MB/s
busses. Each node of a Paragon system consists of two i860 processors and a network interface
chip (NIC)3. One i860 is designated for communication protocol calculations. The routing
hardware implements a packet-based communication protocol and oblivious e-cube (row then
column) routing.

Software cannot directly control resource reservation on the Paragon; a dynamic strategy
for hardware resource reservation is implemented in the system. However, connection-based
communication protocols can be used to implement a static resource reservation strategy at
the software level. Intel implemented such a software-based connection library in the Virtual
Channel Facility (VCF)[MPS93]. This implementation has no routing control, and at the
hardware level it must reserve communication resources for each packet of data exchanged.
However, data is associated with the connection once it is opened. This data includes the source
and destination nodes, the number of requested bytes outstanding, and a queue of outstanding
send requests. While hardware resources are not statically associated with the connection,
buffers and connection information are stored with the connection. By storing information with
the connection, we simplify the logic for performing data transfers.

The connection library guarantees that data need never be buffered in system buffers by
following a protocol similar to a simplified version of the fetch model described in Section 2.3.1.
In response to a receive operation, the destination node sends a control message of the form
< connection ID, number of bytes> to the source node requesting more data. The address
calculation in this connection model is simpler than the general fetch model. The receiving
node only sends flow control requests instead of general sets of addresses, and the data in a send
operation is queued until a request is received on that connection.

Figure 2.14 shows two examples of data exchange in the software connection protocol. In
this protocol, the sending side of the connection stores all state about communication over the
connection. In Figure 2.14(a) the send function is executed first. The send call checks if any
data requests are outstanding on the connection by checkingreq len. There are no outstanding
requests, so the send call queues the send request. Later the corresponding receive request
is made. The receive call sends a request control message. The request message handler
uses the top of the send queue to return the requested information. Figure 2.14(b) shows the
corresponding case where the receive request precedes the send. In this case the length of the
receive request is stored inreq len. When the send request is made, the send call sends the
data immediately becausereq len is greater than zero.

The NX message passing library is an example of the general message passing model on
Paragon. The SUNMOS runtime system also supports a deposit message passing model. The
receiving message handler for deposit messages reads the target address from the message
header and reads the remainder of the message from the network directly to the target address.
The message handler also updates a predetermined semaphore, so the destination node knows
that the buffer has been updated.

3The system I measured uses A-step NICs.

Chapter 2. Model and architecture background 32

send(conn_id, buf1, len)

req_len = 0
send_q = ()

req_len = 0
send_q = ((buf1, len))

recv(conn_id, buf2, len)

req_len = 0
send_q = () <id, len, data>

<id, len>

(a)

<id, len>

send_q = ()
req_len = len

req_len = 0
send_q = ()

<id, len, data>send(conn_id, buf1, len)
req_len = 0
send_q = ()

recv(conn_id, buf2, len)

(b)

Figure 2.14: Two exchanges using a software connection-based protocol. In
(a), the send precedes the receive. In (b), the receive precedes the send.

2.3 Communication models 33

Figure 2.15(a) compares the single-link bandwidth for different message sizes using the
connection library and deposit message passing under SUNMOS. The deposit message passing
time includes time for a system-wide barrier synchronization (on a system of 60 nodes). The
performance of NX is similar to the connection performance when the receive is posted in
advance of the send. The NX performance drops to 20 MB/s if the receiving side must buffer
the message4.

Figure 2.15(b) compares the all-to-all aggregate bandwidth under SUNMOS for 60 nodes
using buffered NX, connections, and deposit message passing. Performance of the dense all-to-
all communication pattern will vary due to changes in network congestion, but the performance
variance greatly increases for messages of 8192 bytes or larger. I am not sure what causes this
performance change, but I speculate that it is related to the line transfer unit (LTU or DMA
controller). The LTU cannot transfer data that crosses 16K byte boundaries, so to send large
messages the system must divide the transfer into several smaller exchanges. By increasing the
number of bursts of data entering the network, the variability of network congestion may be
increased.

For transfer units less than 8192 bytes (which includes most instances of all-to-all com-
munication we have observed), the deposit message passing performance is superior. The
overhead of the barrier synchronization is amortized over more messages, and the connection
implementation sends an extra 60� 59 control messages which increases network congestion.

I also measured all-to-all communication performance under both models using a series of
congestion-freephasesas proposed in [Sco91]. Except for cases of extremely large messages,
the performance of the phased algorithm was substantially inferior to the naive scheduling on
the 60 node machine. There are several reasons for this discouraging performance includ-
ing synchronization overhead, startup and packetization overheads, software deficiencies that
prohibit simultaneous full speed sourcing and sinking of messages, and hardware FIFO bugs.
The benefits of bandwidth scheduling are more important for larger machines. Since current
Paragon systems are limited to 16 rows, the theoretical peak aggregate bandwidth stops growing
for more than 256 nodes. As the size of the machine increases beyond 256 nodes, the bisection
bandwidth becomes the limiting resource.

2.3.4 Thesis communication targets

This thesis explores how differences in communication resource reservation strategies affect
communicationand total execution time. Therefore, the communicationselection and optimiza-
tion phases described in this thesis concentrate on the most efficient instances of communication
models with static and dynamic resource reservation on the target machines.

For dynamic resource reservation, the deposit model has been shown to be an effective
compiler target[SOG94] and more efficient than the general message passing model[SSO+95].
Therefore, I selected the deposit message passing model as the example of the dynamic resource
reservation for this thesis. Since the deposit and fetch models are duals of each other and both
avoid message buffering overheads, the choice of the deposit model over the fetch model is
somewhat arbitrary. The fetch model requires two-way communication between the source
and destination nodes (separating address and data), while the deposit model only requires

4Buffered performance reaches 40 MB/s under OSF1 due to a superior memory copy routine.

Chapter 2. Model and architecture background 34

Paragon: Single link

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

0

20

40

60

80

100

120

140

160

B
an

dw
di

th
 (

M
B

/s
)

Message size (bytes)

Connection

Deposit

Buffered NX

(a)

Paragon: All-to-all

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

0

200

400

600

800

1000

1200

1400

1600

1800

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
/s

)

Message size (bytes)

Connection

Deposit

Buffered NX

(b)

Figure 2.15: Communication bandwidth on Paragon for message passing and
connections: (a) bandwidth on a single link and (b) aggregate bandwidth for
all-to-all communication over 60 nodes. Graph (b) is also labeled with error
bars that show the range between the minimum and maximum bandwidths
measured.

2.4 Chapter summary 35

communication from the source to the destination (combining address and data). However, for
some problems the consumer-directed fetch communication may be more appropriate.

For static resource reservation, this thesis concentrates on a connection-based model with a
send/receive interface. The deposit or fetch model can also be implemented over a connection-
based communication model. These models avoid buffering messages with dynamic resource
reservation, but buffering is unnecessary in the static connection model. Therefore, I use the
simpler send/receive interface in this thesis.

2.4 Chapter summary

This chapter defines the models and architectures used by the thesis. The communication
optimizations described in this thesis take place in the data parallel compiler model and are
targeted to the class of distributed memory machines.

The compiler takes advantage of architecture-specific information by generating commu-
nication code for the most appropriate communication model on the target architecture. In
particular, this thesis examines communication that relies on static and dynamic communica-
tion resource reservation.

Measurements of both options on iWarp and Paragon show that there are substantial perfor-
mance differences between the two resource management models. Since hardware communica-
tion resources can be statically reserved on iWarp, the static connection-based communication
is more efficient and schedulable, but this additional power comes at a cost of increased com-
plexity for the programmer. In addition, there may not be sufficient hardware resources to create
connections for all communication patterns in a program.

Even if hardware resources cannot be reserved, a connection-based library can statically as-
sign buffers and data to connections. By reserving resources at a software level, the connection-
based library on Paragon shows superior performance for sparse communication patterns. For
dense communication patterns, the benefits of synchronization for controlling network conges-
tion and the costs of the additional control messages for the software connections make the
deposit model superior.

Chapter 2. Model and architecture background 36

Chapter 3

Communication analysis

This chapter begins the discussion of the communication optimization phase of the compiler.
Figure 1.2 shows the major phases and flow of information in the Fx compiler. The compiler
uses the Omega test[Pug91] to find the data dependences in the program. The parallelization
phase uses the parallel constructs of the input language (such as array statements and parallel
loops) and the dependence information to determine which statements can be parallelized.

This chapter describes the analysis phases that discover the required communicationpatterns
(shown as data placement and communication maps in Figure 1.2). In the data parallel compiler
model, the programmer works with logical arrays that reside in a single name space. During
compilation, these logical arrays must be mapped to physical arrays; potentially subsections
of the logical arrays are assigned to arrays on different physical processors, i.e. the physical
arrays can be “distributed”. The goal of the communication analysis phase is to find a mapping
between logical arrays and physical arrays that makes a good trade off between the degree of
parallelism and the amount of communication.

The base Fx compiler relies on the HPFalign and distribute user directives to
determine data placement. The compiler can derive data placement information from these
user directives, but these directives specify a constant mapping for all instances of the same
array in the program. To explore more dynamic data mappings, I implemented algorithms that
automatically derive the data placement.

To ease the manipulation of communicationpatterns in later optimization phases,I developed
a linear communication map notation. These communication maps are are generated based
on data placement information from either either explicit user directives or data placement
algorithms.

This chapter finishes with several details of communication generation: replication and
physical array assignment. In some cases, more parallelism can be revealed by replacing loop-
carried communication with replication. If the physical mapping of an array changes during a
program, several different physical arrays may be required to store the distributed array.

3.1 Data placement

In the data placement phase, the compiler uses analysis or user directives to calculate the mapping
from data array elements to processing nodes. To simplify the problem, data placement is often

37

Chapter 3. Communication analysis 38

divided into two sub-problems.

Data alignment: A relative mapping between elements of different arrays that define compu-
tation constraints.

Data distribution: A mapping from data array dimensions to the target physical topology.

By looking at data alignment first, the data distribution problem has more structure, simplifying
the search space of reasonable data distributions.

Figure 3.1(a) shows an example of how arraysA andB can be aligned with respect to each
other. In this case, elementsA(i) andB(i+1) are assigned to the same virtual processor.
Figure 3.1(b) shows arrayB distributed over a processor array withP nodes. Each node stores
three elements ofB locally, i.e. elementsB(1:3) are assigned to the same physical processor.

B(1)

A(1)

B(2) B(n)

A(n)A(n-1)

(a)

B(2) B(3)B(1)

1: P:
B(n-1) B(n)

(b)

Figure 3.1: Examples of data alignment (a) and data distribution (b).

One approach to discovering the desired data array alignment and distribution is to add
user directives to the programming language. This approach is used by Fortran D[FHK+90],
Vienna Fortran [CMZ92], and High Performance Fortran (HPF) [For93] among others. This
approach relieves the programmer of the task of directly inserting send and receive statements,
but the programmer must have a detailed understanding of the memory layout of the program,
so the programmer is still working at a low level of abstraction. The best placement decisions
will vary between different architectures. With explicit user placement, the programmer must
reconsider the data placement for each new architecture.

In [GS91], Gilbert and Schreiber show how to calculate the optimal placement and move-
ment of arrays in an expression given a simple model of communication, but it is not clear that
an optimal solution can be found for a more realistic communication model. In [LC90], Li and
Chen prove that in the general case it is NP-hard to find an optimal alignment that minimizes
communication over the complete program, so a realistic data alignment algorithm must make
some heuristic decisions.

Amarasinghe and Lam[AL93] developed an algorithm that finds the tradeoff between par-
allelism and communication by calculating projections of the iteration space onto the processor

3.1 Data placement 39

space. The programs are Fortran 77 loop nests with loop bounds and references that are affine
functions of the enclosing loops indices.

An algorithm has been designed for the Connection Machine Fortran compiler that attempts
to minimize and identify alignment communication in the data parallel Fortran program[KLS90].
Similar algorithms have been developed by [LC91b], [GB92b], and [CGST93].

Regardless of the alignment algorithm used, four types of alignment conflicts are revealed
by data alignment. For these examples, assume elementsA(i,j) andD(i,j) are aligned.

� offset conflict: The lower and upper bounds of the slice indices are off by a constant, but
the strides are the same, e.g.A(1,1:n) andD(1,1+c:n+c) . Data must be shifted
along the matching dimension.

� stride conflict: The strides of the slices differ, e.g.A(1,1:n:1) andD(1,1:2*n:2) .
Depending on the strides, the data must be redistributed along that dimension. This
redistribution often requires a dense communication step.

� dimension or axis conflict: The corresponding slices are not distributed along the same
dimensions, e.g.A(1:n,i) andD(i,1:n) . Data must be redistributed between two
different dimensions. This redistribution step frequently requires an all-to-all or dense
communication step.

� scalar conflict: Scalar dimensions of the array occurrences are not aligned, e.g.A(1,1:n)
andD(2,1:n) . This is really another form of offset conflict, but the scalar reference
does not have the information that is immediately available with an array slice reference.
Resolving such conflicts is more difficult, because it is not immediately clear how to
match the scalar array dimensions. For example, in the case below it is not obvious
whether to align dimension 1 ofA with dimension 1 or 2 ofD.

... = A(1, 1:n) + D(2, 1, 1:n)

The CM Fortran algorithm locally searches for the best match while constructing the
data alignment graph. It is possible to delay decisions and use the program structure to
make a better match of related scalar dimensions. By delaying the assignment of scalar
dimensions until the neighboring statements have been analyzed, the compiler can make
a more informed choice.

In all cases, these conflicts require regular communication patterns. There may be cases of two
array occurrences that have a combination of these alignment conflicts. For instance,A(1:n)
andD(21:2*n+21:2) have an offset and a stride conflict.

The alignment conflicts show where communication may occur in the program. Whether
communication is actually required depends on the data distribution. In his thesis[Who91],
Wholey addresses the problem of automatically finding a good data distribution. He developed
a compiler for a simple data parallel language. His compiler uses a subset of the CM Fortran
data alignment algorithm to create a data alignment graph, and the compiler uses a search
algorithm to find a low cost distribution for a set of related arrays.

Chapter 3. Communication analysis 40

The Fx compiler supports two methods for deriving data placement information: by the
align anddistribute user directives and by a data alignment algorithm based on the one
used by CM Fortran data alignment algorithm and a distribution algorithm based on Wholey’s.
Since Fx contains more constructs than Wholey’s input language, the Fx compiler cannot
directly use alignment and distribution algorithms described by Wholey.

The next sections describe the automatic data placement algorithms. By using either the
user directives or the placement algorithms, the compiler can construct a data alignment graph,
and it can derive the communication map information described in Section 3.2.

3.1.1 Automatic data alignment

The CM Fortran algorithm first looks at the program text and loop index patterns to create adata
alignment graph, where the nodes represent array dimensions and the arcs represent alignment
constraints. Figure 3.2 shows an example data alignment graph and the corresponding source
code. After creating the data alignment graph, the algorithm tries to group array dimensions
based on their alignment constraints. Array dimensions that are grouped together are stored on
the same processors. Related array dimensions that cannot be grouped together have conflicting
alignment requests, so these dimensions require runtime communication to satisfy the alignment
requirements. After the data alignment phase, the arcs in the contracted data alignment graph
represent all communication that may occur at runtime.

Alignment graph creation

The data alignment algorithm starts by looking atarray occurrencesin the program. An array
occurrence is a textual instance of an array in the program. The data alignment algorithm works
on the array dimensions separately, so in addition to array occurrences, the compiler works
with bundles. A bundle is a handle to a set of aligned array occurrence dimensions. Initially,
no array dimensions are aligned, so a unique bundle is assigned to each dimension of each
array occurrence. Figure 3.2(b) shows the initial data alignment graph for the code segment in
Figure 3.2(a).

Alignment constraintsbetween bundles define constraints on how logical arrays should be
relatively mapped to avoid communication between the two array occurrences. The initial data
alignment graph is constructed with bundles for the nodes and alignment constraints between
the bundles shown as arcs.

There are two major types of alignment constraints.Identity constraints relate different
array occurrences of the same logical array in separate statements. Identity arcs are inserted
between corresponding bundles from one array use to each next possible array use. The dashed
arcs in Figure 3.2(b) show the identity constraints in that example.

Conformanceconstraints define how array occurrences should be mapped to avoid com-
munication within a single statement. Conformance arcs are inserted from the bundles of left
hand side array occurrence to the right hand side array occurrences of the corresponding slice
dimension. Adding these arcs results in a graph of bundles and alignment arcs that represents
the alignment requirements of the program.

In a section of straight-line code where all array ranges are known, all alignment and conflict

3.1 Data placement 41

A(2:n) = D(2:n) + 1.0
C(1:n) = A(1:n) + D(1:n)

(a)

C1,1 A2,1

A1,1
B1

B3 B4 B5

B2
D1,1

D2,1

(b)

B6

B7

A1,1; D1,1

C1,1; A2,1; D2,1
(c)

Figure 3.2: Example code (a). Initial data alignment graph (b). Partially con-
tracted data alignment graph (c). The solid arcs are conformance constraints.
The dotted arcs are identity constraints. The nodes are bundles labeled in
the upper left corner. The interior of the bundle lists the array occurrences
contained in that bundle.A2,1 refers to the first dimension of the second
occurrence ofA.

Chapter 3. Communication analysis 42

information can be determined at compile-time. If the array slice ranges are not constants, array
indices can be symbolically analyzed to get better information. With code that contains loops
and conditionals, locating identity arcs becomes more complicated. Identity arcs may cross
basic block boundaries, and a particular array use may have more than one potential last use in
different basic blocks. Information from the data dependence phase is used to find all potential
identity arcs.

Alignment graph contraction

The initial data alignment graph contains all alignment constraints. Different mappings of
logical to physical arrays will satisfy different subsets of these alignment constraints. If all
alignment constraints can be satisfied, the resulting parallel program does not require any
communication. The data alignment algorithm attempts to find a logical to physical mapping
that satisfies the “best” subset of the alignment constraints.

Each bundle of each array occurrence is assigned an initial data-to-node map from data
elements to virtual processors. The structure of the data-to-node maps is discussed in greater
detail in Section 3.2. For this discussion, it is sufficient to think of the data-to-node map as a
linear mapping from each array dimension to a virtual processor dimension.

For array slices, the data-to-node mapping is calculated from the slice parameters. The
lower bound is the initial offset, and the stride is the initial multiplier, so the initial mapping
for occurrenceA(lb:ub:s) is mapA(i) = s � i + lb. For array dimensions with only scalar
references, the initial map is simpler. The scalar is the initial offset and the multiplier is assumed
to be one, e.g.A(x) ismapA(i) = i+ x. If the scalar is a loop index, the compiler can derive
more information about the initial map from the loop bounds and strides.

By contracting arcs and merging the corresponding bundles, the algorithm finds a subset
of the alignment constraints that can be satisfied. Two bundles can be merged if one of the
following conditions holds:

1. Bundles do not contain occurrences of the same arrays.

2. For occurrences that appear in both bundles, offsets, strides, and dimensions match.

3. For occurrences that appear in both bundles separated by an identity arc, offsets and
strides can be made to match by performing the same adjustments to all entries in one of
the bundles.

For the initial graph in Figure 3.2(b) the conformance arcs can be merged since none of
the conformance arcs connect bundles that contain occurrences of the same array. After the
conformance arcs are merged two identity arcs remain as shown in Figure 3.2(c). From the
lower bound of the first occurrence of arrayA, the compiler calculates the initial offset forA1,1
as 2, but the initial offset forA2,1 is 1. By adjusting the offsets in one of the bundles, we can
maintain the same mapping for both occurrences ofA. If we add 1 to all offsets in bundleB7,
offsets for bothA andDmatch, so both identity arcs can be contracted. Therefore, this example
requires no runtime communication.

The code in Figure 3.3 is a slight variation of the code in Figure 3.2(a). Both examples result
in the same initial and partially contracted data alignment graphs (Figures 3.2(b) and (c)), but

3.1 Data placement 43

A(2:n) = D(2:n) + 1.0
C(1:n-1) = A(1:n-1) + D(2:n)

Figure 3.3: Example code that contains an offset conflict.

the identity arcs in the new example cannot be contracted. Since the lower bounds of the slices
are different in this example, the initial map offsets are different. By adding 1 to all offsets in
bundleB7, offsets forA match, so theA identity arc can be contracted, but the offsets forDdo
not match, so theD identity arc cannot be contracted. If the arrays are distributed, this code will
require communication between the statements to satisfy the offset conflict.

Figure 3.4(a) shows another example code segment with the initial data graph in Fig-
ure 3.4(b). Since no occurrences of the same array are connected by conformance arcs, the
conformance arcs are contracted to form Figure 3.4(c). The identity arcs cannot be contracted,
because the merged bundle would contain references to multiple dimensions of the same array.
For example, merging bundlesB11andB13would result in a bundle that refers to dimensions 1
and 2 of arrayA. Therefore, if any array dimension is distributed in this example, communication
will be required to satisfy the identity constraints.

The arrays that correspond to the merged bundles will not need to communicate along that
dimension at runtime (e.g.A1,1 andD1,1 in Figure 3.4(c)), because corresponding elements
can be stored on the same nodes along that dimension. The arcs that cannot be contracted
represent communication that must occur to maintain the desired alignment if the dimensions in
the bundles are distributed. For example in Figure 3.4, communication will be required between
the first and the second statement if the first dimension of arrayA is distributed, becauseA1,1
andA2,1 occur in separate bundles separated by an identity arc.

The order in which arcs are contracted in the alignment algorithm affects which commu-
nication constraints can be satisfied, so I augmented the CM Fortran algorithm with heuristics
directing arc contraction order. The key insight is that the earlier an arc is encountered, the
more likely it can be successfully contracted (and the resulting alignment constraint satisfied).
Using this insight, it makes sense to contract more “expensive” arcs first. This assumption is
used in [Who91] for a heuristic that first contracts arcs in the most deeply nested loops, because
more deeply nested code will probably be executed more often. In our implementation, each
arc is weighted by theexpectedamount of communication, so the algorithm attempts to contract
more heavily weighted arcs first. The expected amount of communication between a pair of
bundles is calculated from the compile-time information about the array sizes and control flow
arc iteration counts.

Different types of conflicts can result in communication steps of different costs; some
conflicts require more expensive communication than others. For example, offset conflicts that
are not satisfied may require nearest neighbor communication, but dimension conflicts that are
not satisfied may result in more expensive all-to-all communication. We attempt to contract
arcs from most expensive type to least expensive type: dimension conflict, stride conflict, offset
conflict. This type ordered heuristic is also proposed in [CGST93] and [GB92b].

Data alignment also presents a problem in aligning part of an array. In the case shown in

Chapter 3. Communication analysis 44

A(1,1:n) = 3.0 * D(1,1:n)
C(1:n,1) = A(1,1:n) - D(1:n, 1)

(a)

A1,1
B1

C1,1

A1,2
B3

A2,1C1,2
B8 B9 B10

A2,2
B5 B6 B7

B4B2
D1,1

D2,1 D2,2

D1,2

(b)

B11 B12

B13 B14

A1,1; D1,1 A1,2; D1,2

C1,1; A2,2; D2,1 C1,2; A2,1; D2,2

(c)

Figure 3.4: Example code (a). Initial data alignment graph (b). Partially
contracted data alignment graph (c). The graph in (c) cannot be further
contracted due to dimension conflicts.

do j = 1,n
f(A(i,1:n), D(j,1:n))

enddo

Figure 3.5: Aligning part ofA

3.1 Data placement 45

Figure 3.5, the ith row ofA should be aligned with each row ofD. This has been calledmobile
alignment, and [CGS93] and [KLD92] have incorporated the ideas of mobile alignment into
their alignment algorithms. To maintain the alignment constraints, theith row of A must be
realigned in each iteration. Strictly speaking all rows of A do not need to be moved only the
ith row. Changing the owner of the rows or columns of an array separately may be useful, but
it adds complexity to tracking array locations at runtime. It is not clear at what granularity it is
worthwhile to track array subsection movement. Another alternative is to not change the owner
of row i of A, but only temporarily shift the data in row i to the appropriate processors.

For simplicity of the implementation, the current prototype shifts the entire array with each
subsection movement. For the example of aligning theith row of A, every row of A will be
adjusted to ensure that rowi is co-located with rowj of D.

Limitations and comparisons

In addition to the CM Fortran data alignment algorithm, there are two other main data alignment
algorithms: one developed by Li and Chen for the Crystal compiler[LC91b] and another
developed by Chatterjee et al. for HPF[CGST93].

Li and Chen’s algorithm was developed for Crystal, a functional language. This algorithm
concentrates on avoiding dimension conflicts (maintaining dimension uniform accesses). Since
it was developed for a functional language, it assumes that each array is written at most once.
Therefore, array references in sequential loops have a time dimension added. These additional
requirements are necessary for the analysis but can presumably be removed for execution.

Li and Chen’s algorithm does not address multiple separate array instances. All instances
of each array dimension are represented as a single node in the component affinity graph, so all
occurrences of an array must have the same distribution. The nodes are connected by weighted
affinity arcs, depending on how the corresponding array dimensions are related in the program.
The arc weights can be 1,1, or �. The Crystal algorithm selects nodes that use the same
iteration index element and uses an optimal bipartite graph matching algorithm to satisfy the
affinity arcs to those nodes.

The Fx data alignment algorithm and the Crystal data alignment algorithms differ primarily
on the following points:

� The Fx algorithm uses information about the program’s control flow.

� The Fx algorithm separately addresses different occurrences of the same array instance,
allowing the same array to be mapped differently at different points in the program.

� The Crystal algorithm only addresses dimension conflicts.

� The Crystal algorithm uses an optimal algorithm to eliminate conflicts between array
dimensions; the Fx alignment contraction algorithm is not provably optimal.

The HPF data alignment algorithm developed by Chatterjee et al. is newer and makes more
sophisticated decisions that avoid the limits of the owner computes rule. This algorithm also
addresses different type of alignment conflicts separately, and the Fx data alignment algorithm
augments the CM Fortran data alignment algorithmwith this idea of conflict type differentiation.

Chapter 3. Communication analysis 46

The HPF algorithm creates analignment data graphfor each basic block. Instead of
using identity arcs that show control flow, the HPF algorithm uses a more explicit data flow
representation over the entire basic block. With this representation, the original statement limits
are no longer observed. This algorithm uses information about the amount of data to be moved
to determine where data should be calculated. This algorithm is applied to each basic block,
and the results from multiple basic blocks are tied together.

The Fx data alignment algorithm and the HPF algorithm differ primarily on the following
point:

� The HPF algorithm is not restricted by the owner computes rule. However, the owner
computes rule has not been a limitation for our set of sample Fx programs.

3.1.2 Automatic data distribution

By contracting the data alignment graph, the compiler has calculated a mapping from data
elements to a virtual template space. The distribution step finds a mapping from the template to
the physical processors; in this step, the compiler determines whether data should be distributed
over multiple nodes and which distribution pattern to use: cyclic, block, or block-cyclic. For
simplicity of implementation, the prototype compiler avoids the data distribution pattern prob-
lem and assumes that all distributed dimensions use a block distribution. The communication
optimizations in the later phases apply equally well to arrays distributed in cyclic or block-cyclic
patterns.

Dimension distribution

The arcs that remain in the data alignment graph after the data alignment algorithm finishes
show where communication “may” occur. If the dimensions corresponding to the endpoint
nodes are not distributed, the arc does not require any runtime communication. Automatic
distribution algorithms attempt to minimize the number of arcs that require communication
while maintaining the benefits of parallelism.

In his thesis[Who91], Wholey developed a search-based distribution algorithm for a simple
data parallel language. The Fx compiler uses a distribution algorithm based on Wholey’s, but
Fx contains more constructs than Wholey’s input language, so the contracted data alignment
graphs tend to be larger. Therefore, the Fx compiler must reduce the search space to make the
distribution search practical.

Wholey’s algorithm searches the space of potential application distributions to find the
“best” distribution. A potential distribution is created by assigning a distribution state to all
the array dimensions in each node. The distribution state indicates which physical dimension
the array dimension is distributed over. For a machine with aD-dimensional topology, the
set of distribution states isfij0 � i � Dg, where 0 means the dimension is not distributed
and 1 throughD indicate that the dimension is distributed along that physical axis. For each
potential distribution, the algorithm uses a cost model of the machine to estimate the cost of
communication and computation.

Our implementation reduces the search space in three ways. First, not all arrays in a
program are related by alignment arcs; there may be several connected components. The

3.1 Data placement 47

compiler divides the array dimensions into sets that are related and distributes each connected
component separately.

Second, the cost of the communication that results from different types of alignment arcs
differ. Some arcs require relatively cheap shift communication; while others require all-to-all
communication. The Fx compiler reduces the number of nodes to search by contracting the
arcs that correspond to the “cheaper” potential communication. By contracting these arcs, we
make the assumption that these communications have no cost, thus concentrating the search on
avoiding the more expensive communication patterns.

Of course, the relative costs of different types of communication depend on the target
machine. All-to-all communication compared to shift communication will be relatively cheaper
over a cross-bar network than on a mesh network. Still for most realistic machines, exchanging
P messages per node in an all-to-all communication will be more expensive than exchanging
one or two messages per node in a shift communication.

Finally, larger programs are generally composed of several different subalgorithms. The
array distributions for each subalgorithm may not be logically related. However, data structures
may be reused, so this division may be difficult for the compiler to discern. Dependence
information can be used to find where old values are killed to find subalgorithms. The prototype
also includes a directive for the programmer to indicate logical subalgorithms that can be
separately distributed.

Figure 3.6 shows two versions of a contracted data alignment graph. The original version
contains 14 bundles. BundlesB5 and B6 are not connected to any other bundles, so the
graph contains two connected components that can be distributed separately of sizes 12 and 2.
Figure 3.6(b) shows the graph that remains after merging the offset arcs that correspond to less
expensive potential communication. This graph has one connected component of size 4 and
another of size 2. By reducing the number of bundles from 14 to 4 and 2, the search time is
substantially reduced.

3.1.3 Hybrid alignment and distribution analysis

In many parallel programs, it is clear to the programmer how key data structures should be
distributed at one or two critical points in the program. If the programmer is allowed to
place several array occurrences explicitly, the job of the automatic alignment and distribution
algorithm is simplified. The user-specified array occurrences guide the graph contraction in the
data alignment algorithm and further reduce the search space of the distribution algorithm.

With automatic data alignment, different occurrences of the same array can be distributed
differently. Therefore, the HPFalign and distribute directives are not sufficient for
this hybrid data placement, because these directives affect all occurrences of the array in the
procedure.

With the HPFrealign and redistribute directives, the programmer can indicate
that the placement of a data structure has changed. The current Fx prototype does not support
the realign andredistribute directives. To experiment with hybrid data placement, I
implemented the following statement level directive:localdist(array, array dim,
processor dim, offset) . This directive indicates that all occurrences ofarray in the
previous statement should have dimensionarray dim distributed across processor dimension

Chapter 3. Communication analysis 48

A1,1; B5,1; B1,1; B2,1

B6,1; A6,1; A2,1; A3,1

A7,1

A1,2; B3,2; B4,2; B5,2

B6,2; A6,2; A4,2; A5,2

A7,2

B7,1; A8,2

B8,1
B7,2; A8,1

B8,2

BK1; BK2 BK3

B3,1

B4,1

A4,1

A5,1

B1,2

B2,2

A2,2

A3,2

B7

B8

B9

B10

B5 B6

B4

B1

B11

B12

B13

B14

B2

B3

(a)

B7,1; A8,2

B8,1
B7,2; A8,1

B8,2

BK1; BK2 BK3

A7,1

A1,1; B5,1; B1,1; B2,1; B3,1; B4,1

B6,1; A6,1; A2,1; A3,1; A4,1; A5,1

A7,2

A1,2; B3,2; B4,2; B5,2; B1,2; B2,2

B6,2; A6,2; A4,2; A5,2; A2,2; A3,2

B1

B2

B3

B4

B5 B6

(b)

Figure 3.6: Two versions of a data alignment graph constructed from an
iterative smoothing and FFT program. Graph (b) is produced by the data
alignment algorithm. Graph (c) is further reduced by contracting the offset
conflict arcs.

3.1 Data placement 49

do j = 1,n
if (j .ne. pcol) then

a(j,pcol) = 0.0
a(j,:) = a(j,:) - arow1(:)*acol(j)
localdist(a, 1, 0, 0)
localdist(a, 0, -1, 0)

endif
enddo

Figure 3.7: Use of localdist directive to force arrayA to be distributed by rows

processor dim . If processor dim is a negative number, the corresponding array dimen-
sion is not distributed. Figure 3.7 shows the inner loop from a matrix elimination program that
uses thelocaldist directive to force the major arrayA to be distributed by rows. The other
array occurrences are not specified, and the compiler uses the automatic techniques to derive
their alignment and distributions.

My experience with Fx programs shows that combining user directives and automatic
placement is a reasonable trade off between giving programmer control of data placement while
not overloading the programmer with data placement details. As the cost models used in the
distribution search become more accurate, the need for user hints for distribution should not be
as necessary. However, it seems likely that there will always be programs where the compiler
does not have as much information about the program performance as the programmer does.
Therefore, user distribution directives will continue to be useful.

Limitations and comparisons

Gupta addresses the issues of data placement in his thesis[Gup92]. He evaluated these algorithms
in the Paradigm Fortran 77 compiler.

Gupta divides data placement into four parts: array dimension alignment,distribution pattern
selection (blocked, cyclic, or blocked/cyclic), block size selection, and dimension distribution.
For dimension alignment, he uses as similar approach to Li and Chen[LC91b].

For distribution pattern selection, the Paradigm compiler analyzes the loop structure, to
determine if load balancing is required. If load balancing is required, it selects a cyclic
distribution. The Paradigm compiler creates a graph of stride relations to find the best block
size. It finds a minimum spanning tree of this graph and assigns block sizes along this tree.

Finally, for dimension distribution, the compiler uses a search technique that is somewhat
more structured than Wholey’s. It first analyzes the program and serializes any dimensions that
have no potential for parallelism. If more than two dimensions remain, the compiler searches
all possibilities of the distribution assignment for the minimal cost distribution.

The Fx and Paradigm distribution techniques differ on the following points:

� The Paradigm algorithm addresses alternative distribution patterns, and the Fx algorithm
only looks at simple block distribution.

Chapter 3. Communication analysis 50

� The Paradigm algorithm first attempts to eliminate inherently serial dimensions from the
distribution search.

3.2 Communication maps

After the alignment and distribution phases or from user placement directives, the compiler has
generated a data alignment graph decorated with distribution information. The data placement
phase has calculated a data-to-node map for each array occurrence, but the compiler is interested
in node-to-node maps that describe communication patterns. The compiler can mechanically
derive the node-to-node maps from the data-to-node maps of different occurrences of the same
array.

Node-to-node maps offer a simple, concise structure for describing the communication
patterns that result from many dense, regular scientific programs. The later phases of the
communication generation and optimization (described in Chapters 4, 5, and 6) leverage off the
structure of these communication maps. The node-to-node communication maps operate on the
domain and range of k-vector processor IDs. There are three types of communication maps:
proper functions, constant functions, and wildcard functions.

The proper functions only have finite integer multipliers and are injective.map1 is an
example of a proper function.

map1(~p) =

p1 + 3
p2

!

A constant function maps many inputs to one output. By allowing constant functions, the
communication maps can describe gathering communication. The second index ofmap2 is a
constant function, where all data on rowp1 is gathered into the first node of that row.

map2(~p) =

p1

1

!

A wildcard function maps one input to many outputs. Wildcard functions describe scattering
communication. The second index ofmap3 is an example of a scattering function. Data from
(p1; p2) is scattered to some subset of the nodes of rowp1.

map3(~p) =

p1

1

!

This section describes in more detail the structure of the communication map notation
that I developed. It describes how the node-to-node communication maps are generated from
data placement information and used in later compiler phases. First, maps to virtual nodes
are described. Then I describe the adjustments to these maps that are required to define
communication on a finite set of physical nodes.

3.2 Communication maps 51

3.2.1 Data-to-node maps

During the data alignment graph contraction, the compiler calculates the mapping from data
indices to node IDs1. A data-to-node map is expressed as:

map(i1; i2; :::; ik) = map(~{) = S � (m �~{+ ~o)

wherem is a diagonal matrix of multipliers and~o is a vector of offsets. Each diagonal entry
mi of m corresponds to the multiplier for theith data array index. Similarlyoi is the offset
for theith data array index. If the data array isk dimensional, the offset vector isk long and
the multiplier matrix isk � k. S is thek � k subscript matrix that maps the data index to the
appropriate node index. If theith data array index is mapped to theith node index,S will be
the identity matrix. Otherwise,S is a row permutation of ak � k identity matrix.

The Fx compiler finds most of its parallelism from array level statements, where subsections
of arrays are referenced byslices, e.g. A(1:n) refers to elements 1 ton of A. By focusing
on array slices, each entry of these data-to-node maps is a simple linear function of a single
loop index. For example a slice(lb : ub : s) specifies a data array index from a single iteration
variablej by a linear function of the slice parameters,s � j + lb.2 This mapping notation
handles array indices that are simple affine functions, but it does not handle array indices that
are used in multiple dimensions, e.g.A(i,i) .

Consider the code in Figure 3.8(a). Equation 3.1 uses the data-to-node mapping notation
to describe the mapping of the first occurrence of arrayA. In this example, a two dimensional
data arrayA with indices~{ = (i1; i2) is mapped onto a two dimensional node array, and the data
alignment graph shows that the mapping is~p = (i1; 0). ThenmA, SA, andoA are:

mA =

1 0
0 0

!
SA =

1 0
0 1

!
~oA =

0
0

!
(3.1)

These matrices and vectors can be combined to form the node index vector.

mapA(~{) =

1 0
0 1

!
�

1 0
0 0

!
�~{+

0
0

!!
=

i1
0

!
(3.2)

Given two occurrences of the same array that conflict in the alignment graph, the compiler
can calculate the initial and final maps for that array in three steps. The compiler performs these
calculations while contracting the data alignment graph and searching for a data distribution.

Consider the two occurrences ofA in Figure 3.8 with an offset conflict of 1.

1. Calculate A’s initial mappingmapA.

2. Add the conflict information tomapA to getmapA0

1For now consider the nodes to be virtual nodes. Section 3.2.4 addresses the issue of blocking data onto physical
nodes

2If array indices are functions of multiple loop indices, and these indices are linearly combined and only occur
in one dimension of an array occurrence, this limitation may be loosened by keeping a sum of simple maps for each
array occurrence, e.g.map(~{;~|; :::) = S1 � (m1 �~{+ ~o1) + S2 � (m2 � ~|+ ~o2) + :::.

Chapter 3. Communication analysis 52

C(1,1:n) = A(1:n,1)
D(1:n) = C(2:n+1,1) + A(1:n,1)

(a)

A(n,:)

A(2,:)

A(1,:)

(b)

A(n-1,:)A(1,:) A(n,:)

(c)

Figure 3.8: Example HPF code in (a). (b) and (c) show the data-to-node
mapping for both occurrences ofA. The arrows in (c) show the node-to-node
communication that is required.

3.2 Communication maps 53

3. Adjust the subscript matrixS0 to S00 to match the distribution of the second occurrence
of A.

The arrays are mapped onto a two dimensional node torus or mesh. The first occurrence ofA is
distributed over dimension one. Then the second occurrence ofA is distributed over dimension
two. A’s initial mapping is described in Equation 3.2. Figures 3.8(b) and (c) shows the data to
node mappings of both instances ofA. Adding the conflict offset of 1 yields

mapA0(~{) =

1 0
0 1

!
�

1 0
0 0

!
�~{+

0+ 1

0

!!
=

i1 + 1

0

!

To adjust the map to match the new distribution, permute the rows of theS matrix, so array
indexi1 is mapped to node indexp2.

mapA00(~{) =

0 1
1 0

!
�

1 0
0 0

!
�~{+

1
0

!!
=

0

i1 + 1

!
(3.3)

3.2.2 Node-to-node maps

Given two data-to-node maps,map1 andmap2, the compiler constructs a node-to-node map
that takes a data array index vector and maps the results ofmap1 to the results ofmap2. This
map exposes the node-to-node communication orcommunication patternneeded to change
the distribution of a data array frommap1 to map2. For example, the dashed arrows in
Figure 3.8(c) show the node-to-node communication required to move between the two data-
to-node mappings ofA.

With simple algebra, one can calculate� and�, the multiplier matrix and offset vector for
the node-to-node map from� �map1(~{) + � = map2(~{).

pmap(map1(~{)) = �(S1 � (m1 �~{+ ~o1)) + � = S2 � (m2 �~{+ ~o2)

Solving for the coefficient for~{ we get�.

� = S2 �m2 �m
�1
1 � S

�1
1 (3.4)

Then we can use� to solve for the offset�.

� = S2 � ~o2� � � S1 � ~o1

� = S2 � (~o2�m2 �m
�1
1 � ~o1)

However, the matrices may be singular, and in fact the multiplier matrix is most likely
singular, because the diagonal entries that correspond to non-distributed dimensions are zero.
Therefore, we replace each inverted diagonal matrixm�1 with an extended inverted diagonal
matrixm+.

Definition 1 A k�k extented inverted diagonal matrixm+ is defined from ak�k diagonal
matrixm. Each diagonal entry ofm+i is defined as the inverse ofmi, theith diagonal element
ofm. If mi is non-zero, the inverse ofmi is 1=mi. Otherwise, the inverse ofmi is1.

Chapter 3. Communication analysis 54

The rational for changing the rule for inverting a zero value comes from the meaning of
a 0 entry in the multiplier matrix. If a diagonal entry is 0 inm1, then the corresponding
data dimension was not distributed. If the corresponding entry inm2 is non-zero, then that
data dimension will be distributed. With this interpretation, the 1=0 is treated as a wildcard1,
because the data from one node is spread over many nodes in that dimension. Some information
is lost by trying to represent this as a simple linear function. This representation assumes the
data from one node is spread over all the other nodes in that dimension, but the data may only
be spread over a subset of the nodes in that dimension.

For an example of calculating a node-to-node map, consider the data-to-node maps for two
instances ofA defined in Equations 3.2 and 3.3. The node-to-node map matrices are:

� = SA00 �mA00 �m
+

A � S
�1
A =

0 1
1 0

!
�

1 0
0 0

!
�

1 0
0 1

!
�

1 0
0 1

!
=

0 0
1 0

!

� = SA00 � oA00 �� �SA � oA =

0 1
1 0

!
�

1
0

!
�

0 0
1 0

!
�

1 0
0 1

!
�

0
0

!
=

0
1

!

With these values for� and� the node-to-node function is:

pmap(~p) = � � ~p+ � =

0 0
1 0

!
�

p1

p2

!
+

0
1

!
=

0

p1 + 1

!

In this case the data originating at(p1; p2) will be moved to node(0; p1 + 1).

3.2.3 Using communication maps

There are three main types of information to be gleaned from the node communication maps

� Are two communication maps equivalent? Do they represent the same communication
pattern?

� Are the ranges of the communication maps disjoint?

� Are the communication patterns “simple”? Can the compiler recognize the pattern?

If communication maps areequivalent, the compiler can use the same resource reservations
and scheduling when generating code for both patterns. It is trivial to determine whether two
maps are equivalent if the node maps are proper or constant functions. The compiler needs
only to compare the multipliers and offsets. If the functions involve scattering, the slice or loop
bounds are needed to determine whether two node maps are equivalent.

If the ranges of two patterns are disjoint, the compiler can limit which interactions will
occur between the two patterns in its scheduling calculations. In general to calculate whether
the ranges of the functions are disjoint, the compiler must know the bounds of the input set.
However, the input bounds are not always needed in the case of the constant function.

pmap1(~p) =

p1

1

!
pmap2(~p) =

p1

3

!

3.2 Communication maps 55

For example,pmap1 andpmap2 map to disjoint ranges, columns 1 and 3.
The compiler can use the structure of the node-to-node map to recognize many communi-

cation patterns. The structure of the multiplier matrix� describes any dimension changes in
the communication. If� is a diagonal matrix, no dimension redistributions are required for
this communication pattern. Otherwise,� is a row permutation of a diagonal matrix, and the
non-zero entries of� define which dimension redistributions must occur. If entryk of row i is
non-zero, then data distributed along node dimensionk will be redistributed to node dimension
i.

Some rows of� may contain only zero values. If rowi contains only zeros, no data will be
distributed along dimensioni. If row i contains the wildcard value1, then each data element
distributed along dimensioni will be scattered to several nodes in the new mapping.3

If the entries of� form a diagonal matrix and are all zero or one, the offset vector describes
all remaining communication as shifts along each dimension.

3.2.4 Maps on a finite physical array

The previous definitions of communication maps assume that the compiler is mapping to an
infinite set of virtual nodes. In reality, the compiler targets a finite set of real nodes.

The finitepmap may return non-integer values for a given node index. This means the
input node will be sending to all nodes that match combinations of the ceiling and the floor of
thepmap function. This does not occur in the infinite case, because each virtual node is only
responsible for a block of one data item for a given array. For example, consider the following
map:

pmap(~p) =

1 0
0 1

!
� ~p+

3=4
7=4

!

This map indicates that processor~p = (p1; p2) will send data to four different processors
(p1; p2 + 1), (p1 + 1; p2 + 1), (p1; p2 + 2), and(p1 + 1; p2 + 2).

To take the smaller number of nodes into account, up to two arguments must be added
depending on the data distribution. For a block distribution, the map needs a measure of
block size. For a cyclic distribution, the map needs a measure of physical node array size. A
block-cyclic distribution requires both block size and physical array size.

The cyclic mapmapc is defined from the virtual mapmap1 and the vector of physical
dimension sizes~P as follows:

mapc(~{) = map1(~{) mod ~P

where the vector modulo operation is defined as follows

~v mod ~P = (:::; vi modpi; :::)T

The map for a block distribution requires information about the length of each dimension
of the data array and the length of each dimension of the processor array. If~n is a vector of the
data array dimension lengths and~P is the array of physical processor dimension lengths, then

3In the current prototype, the compiler simply broadcasts the data to all nodes along the dimension.

Chapter 3. Communication analysis 56

the block size matrixBsize has diagonal entries that correspond tod(S �m � ~n)= ~Pe. With the
block size matrix, the block distribution map is

mapb(~{) = bBsize�1 �map1(~{)c

For the block cyclic distribution, the block sizes (the diagonal entries ofBsize) can be any
positive integer value. With a diagonal matrix of block sizesBsize and the vector of processor
dimension lengths~P , the map for the general block cyclic distribution is:

mapb=c(~{) = (Bsize�1 �map1(~{)) mod ~P

The node-to-node map can be adjusted for various distribution patterns by constructing
it from data-to-node maps that have been adjusted for finite machines. Consider creating a
node-to-node map from

map1(~{) = B�1
1 � S1 � (m1 �~{+ ~o1) mod ~P

map2(~{) = B�1
2 � S2 � (m2 �~{+ ~o2) mod ~P

distributed in a block-cyclic fashion over~P nodes with block sizesB1 andB2.
Using the definition of the matrix� and vector� in Equation 3.4, the new multipliers and

offsets for corresponding entries are4:

pmap1!2(~p) = (� � ~p+ �) mod ~P

� = B�1
2 � S2 �m2 �m

+

1 � S
�1
1 �B1

� = B�1
2 � S2 � (~o2�m2 �m

+

1 � ~o1)

After retargeting the communication maps to finite real machines, there may be more
communication maps that describe the same real communication pattern. To determine whether
two maps describe the same communication pattern, we must also consider the block size matrix
and the processor vector. For cyclic and block-cyclic distributions, we test the multipliers and
offsets modulo~P . If m � 0 and~o � 0, we can distribute the modulo operation as:

� � ~p+ � � ((� � ~p) mod ~P) + (� mod ~P) (mod ~P)

Therefore, given two mappings we can simply compare the values of the multiplier matrices
and offset vectors modulo~P to determine whether the maps describe the same communication
pattern. Givenpmap1(~p) = �1 � ~p+ �1 mod ~P andpmap2(~p) = �2 � ~p + �2 mod ~P , pmap1

andpmap2 describe the same communication pattern if�1 � ~p � �2 � ~p (mod ~P) and�1 � �2

(mod ~P).
Once adjusted with block size and processor vectors, the node-to-node map accurately

describes which physical processors must exchange data to satisfy the communication pattern.
If the target topology is a connected as an n-dimensional mesh or torus, the node-to-node maps
also directly map to the target topology, and the communication maps can be used directly

4Wherem+ is the extended invert diagonal matrix defined in Definition 1.

3.3 Replication and privatization 57

do j = 1,n
A(j,:)=A(j,:)-Arow1(:)*Acol(j)

enddo

Figure 3.9: Depending on which dimensions ofA are distributed, one or both
of Arow1 andAcol require loop-carried communication.

to calculate routing and link resource usage. However, for target systems with alternative
topologies, an additional mapping from the node-to-node maps to the actual topology is required.
For regular topologies such as fat-trees, this mapping is relatively straightforward, but for
irregular topologies, additional process mapping algorithms must be used to determine the
best way to map the regular problem to an irregular topology[KL70, Sto77, Lo88]. For these
irregular topologies, the node-to-node map still provides valuable information about endpoint
communication requirements, but it is unlikely that the node-to-node map alone will be useful
for directly managing link-level resources.

3.3 Replication and privatization

The compiler can use the program’s data dependences to determine which loop’s iterations can
be executed in parallel. If there are no loop-carried dependences, the loop iterations can be
executed independently in any order. However, traditional dependence analysis concentrates on
three types of dependences: true dependence (read after write), output dependence (write after
write), and anti-dependence (write after read). A compiler for a distributed memory machine
must also consider the fourth possible dependence: input dependence (read after read). If the
array dimension associated with the input dependence is distributed, the input dependence will
require communication.

Consider the example loop in Figure 3.9. If the second dimension ofA is distributed,
the elements ofArow1 can also be distributed, but the elements ofAcol are required by
each distributed column ofA. This data requirement can be satisfied by runtime loop-carried
communication, but this loop-carried communication prohibits parallelizing the loop. Instead
Acol can be replicated over all nodes before entering the loop, then all nodes have a local
read-only copy ofAcol while executing the loop.

After the communication analysis phase, the compiler checks all loops in the program that
have no loop-carried data dependences. If the loop also has no loop-carried communication, the
compiler distributes the loop. If the loop does require loop-carried communication, the compiler
determines if it is legal to replace the loop-carried communication with a replication. If all
loop-carried communications can be replaced with replications, the compiler then distributes
the loop.

Even if the resulting loop cannot be parallelized, replicating arrays may still be beneficial,
because the single replication cost may be cheaper than the many loop-carried communica-
tion costs. Chatterjee et al. address these trade offs in a more sophisticated network flow

Chapter 3. Communication analysis 58

algorithm[CGS93]. Their algorithm considers replication due to explicit parallel constructs like
spread in addition to loop-carried communication.

One problem with this approach is determining the tradeoff between increased memory
requirements for replicated variables and the increased execution timedue to the lost parallelism.
In the prototype compiler, I use the rank of the array as a heuristic for using replication. An
array is a candidate for replication if it has a smaller number of dimensions than other arrays in
the same bundle.

By using more information about the data dependences in the program, the compiler can
possibly eliminate more loop-carried dependences and communication. With array privatiza-
tion, the compiler attempts to find arrays that are written in the iteration before they are read, so
the data in the array is “private” with respect to the iteration[TP92]. The analysis concentrates
on array references with indices that are affine function of loop bounds. These arrays tend
to be used as local temporaries, so each node can use separate private copies of these arrays
permitting the loop to be parallelized. The Fx compiler does not explicitly do the analysis for
array privatization, but it does recognize array kills when the entire array is rewritten and avoids
inserting indentity conflict arcs in those cases.

3.4 Assigning logical arrays to physical arrays

The data parallel program manipulates logical arrays. Once data is mapped to a distributed
system, the logical arrays must be mapped to distributed physical arrays. At different points in
the program, the logical array may be mapped to the system differently. These mappings may
require physical arrays with different shapes or sizes.

Figure 3.10 shows three redistributions of the logical arrayA. In Figure 3.10(a),A is
distributed by columns at one point in the program and is distributed by rows at another point
in the program. The physical arrays required on the nodes for these two distributions have
different shapes. In Figure 3.10(b),A is first distributed by columns. Then all ofA is stored
in a larger array on a single node. This case requires two physical arrays of different sizes.
Figure 3.10(c) shows the case wereA’s location is shifted. The physical arrays are the same
size and shape in each distribution, but the assignment from data elements to nodes changes.

The prototype compiler handles requirements for different shapes by assigning a different
physical array to each instance of the logical array that requires a different shape. Different
shapes only apply to array instances that differ by dimension or block size. Array instances
that differ only by offset can use physical arrays of the same shape. Therefore, the number of
different physical arrays needed for a single parallel array is a function of the number of array
dimensions and the number of different block sizes.

3.5 Chapter summary

This chapter describes the phases I implemented to support data placement and communication
analysis in the prototype compiler. The prototype compiler can rely on user directives or
data placement analysis to determine how data should be mapped to the target machine. This
data placement information shows what communication is required in the program. The data

3.5 Chapter summary 59

physA(n, n/p)

P1 P2 P3 P4

parallel array A

physA(n/p, n)

P1

P2

P3

P4

(a)

parallel array A

physA(n, n/p)

P1 P2 P3 P4

physA(n, n)

P1

(b)

P1 P2 P3 P4 P2 P3 P4P1P4

parallel array A

physA(n, n/p) physA(n, n/p)

(c)

Figure 3.10: Three cases of changing logical array to physical array assign-
ments. Case (a) requires differently shaped physical arrays. Case (b) requires
different sized physical arrays. Case (c) reassigns logical array elements within
physical arrays of the same size and shape.

Chapter 3. Communication analysis 60

placement analysis builds on previous work, but some adjustments were necessary to make the
distribution algorithm practical for the Fx language.

I developed a concise communication map representation. Later communication phases use
the structure of the communication maps to simplify their operations. The compiler derives the
node-to-node communication maps from the data-to-node maps produced by the data placement
phase.

The replication phase attempts to expose additional parallelism by converting loop-carried
point-to-point communication to a single replication communication outside of the loop. Even
in cases where parallelism is not exposed, replacing loop-carried communication with repli-
cation can result in more efficient communication. This replication calculation still requires
calculations to determine the best trade-off between space for the replication and the reduced
execution time.

Once the data mapping has been calculated, the compiler must assign logical arrays to
physical arrays for each array occurrence in the program. A single logical array may be mapped
to several different physical arrays during the course of the program, because of different array
distributions. The number of different physical arrays should be small, because the compiler
reuses array space when the size and shape of the array does not change. If the memory
requirements are too high, the compiler writer could use the Fortranequivalence statement
to reuse the same memory locations with different shapes.

Chapter 4

Architecture-directed communication
code selection

Chapter 3 described how a parallelizing compiler can detect and manipulate regular communi-
cation patterns required in a data parallel program. With information about the communication
patterns and the target parallel machine, the compiler can make informed decisions about what
type of communication code to generate.

Chapter 2.3 introduced two communication models: the static and dynamic communication
resource reservation models. The dynamic model requires little compile-time information and
is quite adaptive to runtime changes. The static reservation model can be more efficient, but
it requires more compile-time information. With the communication pattern information, the
compiler is well suited to taking care of the details that arise from using a static reservation
communication model. This chapter describes how a parallelizing compiler can use infor-
mation about the target machine to select the best communication model for communication
code generation. In particular, this chapter describes the compiler phase shown asSimple
communication code selection in Figure 1.2.

4.1 Communication code selection issues

The communication in Successive Over Relaxation (SOR) is one simple example of a com-
munication pattern that can be recognized at compile time. Figure 4.1(a) shows data parallel
pseudo-code for SOR with the required communication steps added (1a and 2a). Consider one
step of the SOR computation shown in Figure 4.1(b). In the parallel implementation, bothA
andB are distributed over a ring of nodes. Each node owns a subregion of each array, and the
compiler detects that each node shares regions of data with its neighbors[Ger90]. The compiler
creates overlap areas, where nodes store duplicated data that is owned by the neighboring node
but is needed locally for the next computation step. The top of Figure 4.1(b) shows how portions
of theA array are distributed over three nodes and what communication is needed to keep the
overlap regions up to date.

The overlap shift communication can be implemented with static resource reservation over
connections or with dynamic resource reservation in the deposit model. The static connection-
based implementation has two performance advantages. First, the resources are reserved

61

Chapter 4. Architecture-directed communication code selection62

0. A = initial values
do i=1,iter cnt

1a. overlapshift(A)
1b. B(2:n-1) = c1*A(1:n-2) + c2*A(3:n)
2a. overlapshift(B)
2b. A(2:n-1) = c1*B(1:n-2) + c2*B(3:n)

enddo

(a)

Overlap A
Local A

Overlap A
Local A

Overlap A
Local A

P: P+1:P-1:

c2*A(3:n)

1b. B(2:n-1) = c1*A(1:n-2) +

c2*A(3:n)

1b. B(2:n-1) = c1*A(1:n-2) +

c2*A(3:n)

1b. B(2:n-1) = c1*A(1:n-2) +

1a. shift(A, P)
shift(A, P-2)

await updates

1a. shift(A, P+1)
shift(A, P-1)

await updates

1a. shift(A, P+2)
shift(A, P)

await updates

(b)

Figure 4.1: (a) SOR data parallel pseudo-code. (b) One communication step of SOR.

4.2 Communication code selection algorithm 63

once for the connection, and many messages pass over the connection amortizing the startup
overheads. Second, if the connection overhead is low enough, the connection implementation
does not first need to pack data into a temporary buffer. Instead it can directly send from and
receive into the local array.

Once the compiler has decided on a single communication model, there may be several
reasonable implementations in that model. In the dynamic model, different routing methods
can be used that trade resources for execution time. For example, on iWarp either torus or mesh
routing can be used. The torus routing has a shorter average message distance but requires more
resources than the mesh routing.

In the static model, a single communication pattern may be satisfied by several different
algorithms. For example, a broadcast can be satisfied by an implementation that communicates
over a ring of connections or by an implementation that communicates over a tree of connections.
The ring-based implementation will takeO(P) steps. The tree-based implementation will take
O(logP) steps, but the tree-based implementation may require more communication resources.

4.2 Communication code selection algorithm

After the communication analysis phase described in Chapter 3, the compiler knows which
communication patterns are required in the program. The analysis phase passes on this in-
formation by annotating the intermediate representation of the program with communication
maps to mark where and what type of communication is required. The annotated intermediate
representation and the target machine characterization are input to acode selection algorithm.
The algorithm uses the communication maps, machine description, array sizes, and iteration
counts to chose the best communication model for each communication pattern. The output of
this algorithm is an assignment from communication maps to implementations.

The architecture-based communicationperformance information is collected from an expert
on the performance of the target system. The expert knows a number of different implemen-
tations that are available for performing a set of common communication patterns. The set
of communication patterns recognized by the expert is not complete. Some communication
patterns are not considered, and the performance of other communication patterns may not be
improved with additional information. The target system expert may be a human (as was the
case for the iWarp and Paragon characterizations in this thesis), or potentially, some additional
tool could systematically characterize the communication performance on the target parallel
system.

This expert information is encoded into atarget-comm-listthat is used by the code selec-
tion algorithm. The target-comm-list has entries for each recognized communication pattern.
Each entry is a list of information about the set of implementations that can satisfy the in-
dexed communication pattern. Each implementation entry contains information including an
execution time model, a set of resource requirements, and a description of how to invoke the
implementation.

Figure 4.2 shows an example entry in the target-comm-list. For the prototype compiler,
the execution time is estimated by a function of the data size. The resource requirements
for the iWarp architecture measure how many logical channels are required on each node.

Chapter 4. Architecture-directed communication code selection64

.

.

.

Time: 80 + 50 x M
Resource count: 4
Function name: "connshift"
...

...

Time: 500 + 75 x M
Resource count: 0
Function name: "depshift"

Template pattern i

Implementation 1

Implementation n

Figure 4.2: Example entry in the target-comm-list.

for each communication pattern Pi do
entry MatchPattern(Pi , target-comm-list)
if entry= ; then

Generate default message passing code
else

Select fastest implementation that fits in available resources
endif

endfor

Figure 4.3: Pseudo-code for the communication code selection algorithm.

Communication resources are discussed in greater detail in Chapter 5. In this implementation,
the different communication options are implemented by calls to a communication library, so
the target-comm-list entry describes the function call and the argument list for each alternative
implementation.

Given the communication maps that describe the communication in the program and the
architecture-specific performance information in the target-comm-list, the pseudo-code in Fig-
ure 4.3 outlines the simple code selection algorithm. A list of the unique communication maps
in the annotated intermediate representation are input to the algorithm. For each communication
map, the algorithm tries to find a matching template in the target-comm-list. If an entry is found,
the algorithm selects the best implementation given the number of available communication
resources. If no matching entry is found, the default message passing code is used.

The code selection algorithm relies on a cost model of the possible communication imple-

4.3 Communication code generation 65

mentations. Similarly, the data distribution algorithm described in Section 3.1.2 relies on a
communication cost model to determine which array dimensions to distribute. As with all good
compiler problems, communication cost estimates are useful at several points in the compila-
tion, so dividing and ordering the compiler phases is not straightforward. I use a less accurate
communication model for the distribution phase. The performance differences between per-
forming an all-to-all communication or no communication are obvious with relatively rough
communication cost estimates. However, one could consider iteratively performing the distri-
bution and code selection phases and feeding back information about the cost models between
the two phases.

The MatchPattern function uses the structure of the communication map to match the
communication map to the appropriate template entry. Section 3.2.3 describes how the struc-
ture of the communication map corresponds to different types of data movement. A single
communication map may also match several communication templates. For example, a single
communication step may require both a shift and a dimension change communication. The
communication templates are ordered by the expected cost of the corresponding communication.
The cost of the more expensive communicationpattern dominates the cost of the communication
step.

This simple algorithm works well if there are sufficient communication resources to satisfy
the best communication implementation for each communication pattern. This algorithm
will also find a valid implementation assignment for programs that require more resources.
However, with the communication sequence information, the compiler can make better decisions
about which communication patterns would most benefit from faster more resource intensive
implementations. Chapter 5 describes an alternative resource management approach to code
selection. This approach relies on several simple algorithms that enable the compiler to do a
better job of managing the use of limited communication resources.

4.3 Communication code generation

After the implementations have been chosen for each communication map, the code generation
step inserts the necessary communication code. The compiler can insert library calls with the
appropriate parameters for the communication pattern, or it can directly insert the code needed
to satisfy the communication pattern. While directly inserting the communication code may
enable better optimizationsfor the single node code, it can result in unacceptable code growth. A
library of communication routines simplifies code generation and reduces code growth perhaps
at the cost of limiting single node code optimizations. The prototype compiler inserts function
calls to simplify the implementation.

In addition to inserting communicationcode, the compiler must keep track of what resources
are required for all of the communication implementations. After all implementationshave been
chosen for all communication patterns, the compiler must generate initialization code for the
static connections and resource reservations for the pool of resources required for the dynamic
communication.

The compiler will not always have complete information at compile-time. For example,
some loop bounds, array indices, or array slice bounds may not be known at compile-time.

Chapter 4. Architecture-directed communication code selection66

There are several problems introduced by this lack of compile-time information. The accuracy
of the estimates of communication time are affected by unknown loop bounds and array slice
bounds. The compiler uses a constant value if the upper and lower loop bounds or array slice
bounds are unknown. If the strides or array indices are unknown, compiler will not always be
able to fully analyze all communication patterns at compile-time. When the compiler cannot
analyze a communication pattern, it must rely on runtime data and dynamic tests as a fall
back position. The compiler is capable of generating communication code that uses runtime
information to produce and consume the appropriate messages[Sti93].

For a given statement, the compiler may be able to recognize some communication patterns
but not others. Rather than mix informed and uninformed implementations in a single statement,
the prototype compiler uses the default message passing communication for all communication
patterns of the statement if any communication pattern cannot be analyzed.

Additional array assignments may be required to resolve different physical arrays repre-
senting the same logical array along different program control paths as described in Section 3.4.
The compiler inserts assignments where necessary at the join points of the control flow of the
program, similar to the�-functions inserted for static single assignment form (SSA)[CFR+88].

Function and procedure calls can also introduce uncertainty about the mapping of arrays.
In the absence of any knowledge of the function, the compiler must assume that all argument
arrays and global arrays have moved. In this case, the compiler must insert runtime checks and
communication code to return arrays to a known mapping. However, the compiler often has
some knowledge about function calls. Efficient data parallel functions can be compiled with the
addition of a small set of directives that indicate whether the caller or callee moves procedures
on entry and exit[YO94]. The DYNAMIC directive in HPF gives the compiler some of this
information by indicating whether an array can be dynamically redistributed. Interprocedural
analysis can also be performed to calculate the required communication patterns from the caller
code to the callee code.

4.4 Communication code selection evaluation

To illustrate the effects of the communication code selection algorithm, we present measure-
ments from four program kernels: blocked matrix multiplication, successive over relaxation
(SOR), two dimensional fast Fourier transform (2D FFT), and Gauss Jordan elimination with
pivoting. This is by no means an exhaustive list of dense, scientific programs, but the commu-
nication patterns in these programs are representative of the communication patterns that occur
in many dense linear algebra and signal processing codes.

SOR Requires nearest neighbor communication into duplicated ghost or overlap regions. This
style of communication is required for the class of iterative, stencil computation.

Blocked matrix multiplication Requires nearest-neighbor communication. Many blocked
algorithms require a nearest neighbor shifting of the data set[KS91]. During a blocked
step, each node calculates on local data, and then shifts the local data to the neighboring
processor. Pipelining replication with the next computation step also requires nearest
neighbor communication.

4.4 Communication code selection evaluation 67

Gauss Jordan elimination Requires replication communication. Many elimination and other
matrix algorithms require replication of a special row or column (e.g., a pivot row). Both
simplex and matrix multiplication can be implemented using replication communication.

2D FFT Requires two all-to-all communication steps. This dense redistribution communica-
tion pattern is representative of computations that operate on the data in different phases.
For example, some simulation programs (such as airshed modeling) operate over one
dimension in the first phase and another dimension in the second phase.

These communication patterns appear in many of the dense linear algebra programs I surveyed.
One communication pattern that is missing, is communicationbased on mismatched strides. For
the few programs that I found that required non-unit strides, the compiler could adjust the block
size for those arrays to avoid communication. For programs that do have unavoidable stride
conflicts, the resulting communication will likely be dense, so the all-to-all communication of
the 2D FFT program is a good representative.

For each program, we measured two versions: one that uses the communication implemen-
tations suggested by the code selection algorithm and another that uses the best instance of the
alternative communication model. All other communication optimizations are performed on
both versions, so the effects of differing communication models are isolated. These programs
were executed on a 64 node iWarp system and a 60 node Paragon system running SUNMOS1.

The information in thetarget-comm-listfor each architecture can be summarized as fol-
lows. For iWarp, the statically reserved connection implementation is always superior to the
dynamic resource reservation implementation. The only limit to using the static connection
implementation is the limited number of resources to implement connections.

For Paragon, the software connection protocol is superior for sparse communication pat-
terns. For dense communication patterns, the cost of the barrier synchronization required for the
dynamic deposit model is amortized, and the barrier synchronization provides another mecha-
nism for network congestion control. For sparse patterns in these programs, NX is competitive
with the connection protocol. However, even for these relatively synchronous data parallel
programs, the NX implementation requires a substantial amount of system buffer space. For
dense patterns, buffering costs dominate, and the NX implementation is not competitive with
either the connection or deposit implementations.

4.4.1 iWarp measurements

Figure 4.4 compares the absolute communication performance for all four programs on an
8� 8 iWarp. Figure 4.5 shows the normalized communication and computation performance
of these programs. Table 4.1(a) shows the percentage change in total execution time from the
communication code selected by the algorithm to the communication code in the alternative
communication model.

The major arrays in the blocked matrix multiplication are distributed over two dimensions,
by rows and by columns. This application requires nearest neighbor shifts. There is no network
contention for either the message passing or connection-based implementations, so only the
effects of improved resource reservation are apparent.

1This system uses A-step network interface chips (NICs).

Chapter 4. Architecture-directed communication code selection68

The arrays of this SOR application are also distributed over two dimensions. SOR also
involves nearest neighbor communication, but in this case, the non-local data can be stored
in overlap regions as described in Section 4.1. With overlap communication, the connection
model can avoid the sender’s packing step, so in addition to improved resource reservation this
pattern benefits from eliminating a memory copy.

The 2D FFT application iterates over 2D FFTs for many samples. Each 2D FFT requires
two all-to-all communication steps. In addition to the improved resource reservation, the all-
to-all communication benefits from the improved control of network scheduling in the static
connection-based implementation.

The major array of the Gauss Jordan elimination is distributed by columns. It was run on
a data set that requires pivoting in each iteration. Each iteration of the elimination requires the
replication of the pivot column. Both the dynamic message-based and static connection-based
implementations follow a similar pattern for propagating the broadcast data. The connection-
based implementation benefits from improved resource reservation.

In all cases, the static connection-based implementation shows substantially improved com-
munication performance. For the communication patterns in the blocked matrix multiplication
and Gauss Jordan elimination, the major effect of the static resource reservation is the reduced
communication startup overhead. Therefore, as the problem size increases for both cases, the
relative impact of the lower startup overhead is reduced. The all-to-all communication in the
2D FFT also benefits from superior control of network routing, and SOR also benefits from
eliminating a buffering step. Therefore, the relative impact on communication time for these
two programs does not decrease for larger program sizes.

4.4.2 Paragon measurements

The superiority of one communication model over the other is not clear for Paragon, since both
models rely on dynamic resource reservation at the hardware level. Figure 4.6 compares the
communication performance for all four programs on a 60 node Paragon system. I concentrated
on the performance of the deposit model for dynamic resource reservation. Figure 4.7 shows the
normalized performance of communication and computation for these programs. Table 4.1(b)
shows the effect of the different communication models on total execution time.

The major arrays in the blocked matrix multiplication are distributed over both machine
dimensions. The problem requires nearest neighbor communication, so the performance of the
software-based connection model is superior.

I measured five iterations of an SOR application. The arrays in the SOR application are
distributed by columns over one dimension. The sparse, nearest-neighbor communication
pattern encounters little congestion, so the connection-based choice is superior. However,
the connection-based overheads are not so low that the connection-based implementation can
directly communicate from the processor to avoid a packing step as the iWarp implementation
does.

I measured ten iterations of a 2D FFT algorithm. The major array in the 2D FFT is
distributed by columns initially, andeach 2D FFT requires two all-to-all communication steps.
All-to-all communication is a dense communication pattern, so the deposit model is superior.
However, for total execution time, the communication model makes little difference, even for

4.4 Communication code selection evaluation 69

Blocked MM SOR

■

■

■

■

●

●

●

●
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
ds

)

N

■ Default (deposit)

● Algorithm selection (connection)

●
●

●
●

●
●

●
●

■

■

■

■

■

■

■

■

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000 1200

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
ds

)

N

● Algorithm selection (connection)

■ Default (deposit)

(a) (b)

2D FFT Gauss Jordan

■

■

■

●

●

●

0

0.005

0.01

0.015

0.02

0.025

0.03

0 100 200 300 400 500 600

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
ds

)

N (complex elements)

■ Default (deposit)

● Algorithm selection (connection)

●

●

●

●

■

■

■

■

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
ds

)

N

● Algorithm selection (connection)

■ Default (deposit)

(c) (d)

Figure 4.4: Communication performance of different communication models on
8�8 iWarp for (a) blocked matrix multiplication, (b) successive over relaxation,
(c) two dimensional FFT, and (d) Gauss Jordan elimination.

Chapter 4. Architecture-directed communication code selection70

Blocked MM SOR

128 256 384 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 ti
m

e

N

Default (deposit)

Algorithm selection (connection)

128 256 284 512 640 768 896 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 ti
m

e

N

Default (deposit)

Algorithm selection (connection)

(a) (b)

2D FFT Gauss Jordan

128 256 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 ti
m

e

N

Default (deposit)

Algorithm selection (connection)

128 256 384 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 ti
m

e

N

Deposit (default)

Algorithm selection (connection)

(c) (d)

Figure 4.5: Normalized program performance on8� 8 iWarp for (a) blocked
matrix multiplication, (b) successive over relaxation, (c) two dimensional FFT,
and (d) Gauss Jordan elimination. The darker areas show the relative amount
of time spent in computation, and the lighter areas show the relative amount of
time spent in communication.

4.4 Communication code selection evaluation 71

iWarp
Problem size Blocked MM SOR 2D FFT Gauss Jordan

128 16% 25% 27% 6%
256 10% 13% 13% 3%
384 7% 9% 2%
512 5% 9% 13% 1%
768 5%
1024 4%

(a)

Paragon
Problem size Blocked MM SOR 2D FFT Gauss Jordan

256 36% 20% -1.1% 7.3%
512 20% 7.2% -1.8% 4.8%
1024 4.7% 2.5% -1.6% 3.9%
2048 4.1% 0.6% -1.7% 1.4%
4096 2.6% 0.5% -0.6% 0.2%

(b)

Table 4.1: Percentage reduction in total program execution time between the
static and dynamic communication models on a 64 node iWarp (a) and a 60
node Paragon (b). Percentages less than zero (as for Paragon 2D FFT) indicate
that the dynamic communication model was faster.

Chapter 4. Architecture-directed communication code selection72

OSF SUNMOS
VCF NX VC NX

Startup overhead (SO) 10�s 50�s 50�s 50�s
Peak BW 150 MB/s 60 MB/s 150 MB/s 150 MB/s

Table 4.2: Communication characteristics of connections and NX under OSF
and SUNMOS operating systems.

small problem sizes.
The major array of the Gauss Jordan elimination is distributed by columns. It was run on

a data set that does not require pivoting. The major communication pattern is the replication
of the pivot column. Both implementations use information about the physical configuration
to replicate data over the physical rows then the physical columns. The real communication
performed is between nearest neighbors, so there is little congestion. Therefore, the connection-
based implementation shows better performance.

In these measurements, I concentrated on communication models that do not require buffer-
ing. By adding buffering, we can compare the performance of the NX library. On the blocked
matrix multiplication and the Gauss Jordan elimination programs, the performance of the NX
library is almost identical to the performance of the connection-based communication. These
two programs are sufficiently well-synchronized that they do not require frequent buffering,
although the programs do buffer messages occasionally, so NX still requires substantial system
buffering space. The SOR program is less synchronous. The NX implementation must buffer
data more frequently, so the connection-based implementation is superior.

4.5 Discussion

The measurements in this chapter show that the choice of the preferable communication model
depends on the target machine. The static resource reservation communication is superior over
a broader range of communication patterns on iWarp with its support for reserving hardware
resources than on Paragon.

Even without direct hardware support, the software-based connection protocol used on
the Paragon is beneficial in some cases. A software-based connection protocol avoids system
buffering, statically associates information and buffers with the connection, and simplifies the
logical communication path, increasing the possibility of lowering communication overheads.
With the simpler protocol, optimizations in the data transfer library should be more tractable.
For example, the Virtual Channel Facility[MPS93], a connection library developed under OSF,
was indeed far more efficient than the regular NX communication library. However, the
increased performance exposed more hardware problems making it an unreliable compiler
target. Table 4.2 compares the startup overheads and peak bandwidth of NX and the software-
based connections under OSF (where VCF was developed) and under SUNMOS (where the
connections in this paper were measured).

Since software-based connections do not directly reserve hardware network resources, in-

4.5 Discussion 73

Blocked MM SOR

■ ■
■

■

■

● ●
●

●

●

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
ds

)

N

■ Default (deposit)

● Algorithm selection (connection)

■
■

■

■

■

●
●

●

●

●

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
ds

)
N

■ Default (deposit)

● Algorithm selection (connection)

(a) (b)

2D FFT Gauss Jordan

■ ■
■

■

■

● ●
●

●

●

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
ds

)

N

■ Algorithm selection (deposit)

● Alternative (connection)

■
■

■

■

■

●
●

●

●

●

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
ds

)

N

■ Default (deposit)

● Algorithm selection (connection)

(c) (d)

Figure 4.6: Absolute communication time on 60 node Paragon for (a) blocked
matrix multiplication, (b) successive over relaxation, (c) two dimensional FFT,
and (d) Gauss Jordan elimination.

Chapter 4. Architecture-directed communication code selection74

Blocked MM SOR

300 540 1080 2100 4140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 ti
m

e

N

Default (deposit)

Algorithm selection (connection)

300 540 1080 2100 4140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 ti
m

e

N

Default (deposit)

Algorithm selection (connection)

(a) (b)

2D FFT Gauss Jordan

256 512 1024 2048 4096
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 ti
m

e

N

Algorithm selection (deposit)

Alternative (connection)

300 540 1080 2100 4140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 ti
m

e

N

Default (deposit)

Algorithm selection (connection)

(c) (d)

Figure 4.7: Normalize program execution time on 60 node Paragon for (a)
blocked matrix multiplication, (b) successive over relaxation, (c) two dimen-
sional FFT, and (d) Gauss Jordan elimination. The darker area shows compu-
tation time, and the lighter area shows communication time.

4.6 Chapter summary 75

formation about the sequence of communication patterns is not as crucial to target the software-
based connections. In this case, the compiler can just generate calls to a collective commu-
nication library optimized for the target system. Then the compiler does not need to know
as much about the target communication system; the collective communication library can do
the analysis to determine for which communication patterns the connection-based protocol is
beneficial. For example, the iCC collective communication library[B+94a] developed for the
Paragon uses runtime tests of the message size and partition size to select the most appropriate
communication algorithm for the collective communication operation. Regardless of whether
the compiler or a library is optimizing communication, the software-based connection protocol
is another option for optimizing communication performance.

For systems that allow program management of limiting hardware communication resources,
compiler information about the sequence of communication patterns is essential to do a good
job of resource management. If there are not sufficient resources to open all connections
simultaneously, a global view of the program is necessary to determine which communication
patterns should use a slower implementation or where static connections should be opened and
closed in the program.

For both machines, the choice of the communication model makes a measurable difference
in total execution time for most of the application kernels we measured. This change in execution
time is larger for smaller problems. As the problem size grows relative to the machine size, the
size of the messages exchanged increases, so improvements in communication startup overhead
become less important. For most memory-based applications, the cost of computation grows
faster than the cost of communication. For example, when multiplying twoN �N matrices,
the computation grows asN3 but onlyO(N2

) bytes need to be exchanged.
If the input problem size can be scaled large enough relative to the machine size, the

communication overhead is negligible. However, many real programs cannot be arbitrarily
scaled. For these problems, we would still like to add more computation nodes to speed up
the problem. Optimizing communication increases the amount of effective parallelism, making
it practical to distribute the arrays into smaller blocks over more processors. Measurements
in [SSO+95] show the effect of increased communication efficiency on the scalability of 2D
FFT and SOR on the Cray T3D.

4.6 Chapter summary

This chapter describes the simple code selection algorithm that I developed for the Fx com-
piler. This algorithm uses expert information about communication performance on the target
architecture condensed into a simple data structure. With this data structure, the code selection
algorithm is relatively straightforward. This chapter presents measurements of several appli-
cations, comparing the algorithm’s communication code selection with the default dynamic
implementation or an alternative implementation. These measurements show that this simple
approach does improve the total execution time.

The programs measured in this chapter are relatively small, but they should be seen as
building blocks for larger algorithms. If your goal is to solve a single matrix multiplication
program, a desktop computer is probably sufficient. Many larger scientific programs and signal

Chapter 4. Architecture-directed communication code selection76

processing algorithms use these type of programs as computation steps.

Chapter 5

Communication code selection with
limited resources

The previous chapter describes one simple algorithm for selecting from different communica-
tion code alternatives. This simple algorithm works well in cases where there is no limiting
communication resource or where there are few communication patterns required in the pro-
gram. However, for larger programs, limited communication resources force the compiler to
solve a resource management problem to use the static resource reservation model.

This chapter first describes the limiting communication resources on several parallel sys-
tems. Then we abstract away from particular communication resources to define two communi-
cation resource management problems and propose several algorithms to solve these problems.
These algorithms are used in theResource management communication code selection
phase shown in Figure 1.2. Finally, we present measurements from iWarp to evaluate the
effectiveness of these resource management algorithms.

5.1 Examples of communication resources

Regardless of the protocol, communication between nodes in a system requires communication
resources. The specific resources depend on the implementationof the communicationprotocol.
For example, statically reserved connections can be implemented with direct hardware support
(such as on iWarp) or can be implemented in software on top of some other dynamic hardware
protocol (such as done by the VCF library on Paragon).

The availability of communication resources can affect the execution time of transfers in
the network and processing at the endpoints. Some network-based communication resources
are hardware queues and routing table entries. Some endpoint communication resources are
buffering memory and connection tables.

The following sections examine specific communication resources from several parallel sys-
tems: iWarp[B+88], the INMOS T9000[MTW93], ATM networks, the Intel Paragon[Div91],
and the Stanford Flash[K+94].

77

Chapter 5. Communication code selection with limited resources78

5.1.1 iWarp

iWarp supports connections with a limited number of hardware communication queues (logical
channels) in the communication agent. Data from different logical channels are multiplexed
over the physical bus on a word by word basis. For two nodes to communicate, they build
a connection by configuring channels on adjacent nodes to forward data to each other. The
connection requires one logical channel on each communicating node and each intermediate
node. Figure 5.1 shows several connections in a system with two logical channels per node.
When initializing the connection, communicating nodes must know which logical channels are
used on their neighboring nodes to correctly initialize the flow-control hardware. For example,
in the connection from node (0,0) to node (1,1), node (0,0) must know that logical channel 2
forwards to logical channel 1 on node (1,0), and node (1,0) must know that logical channel 1
forwards to logical channel 1 on node (1,1).

In the example in Figure 5.1, no more connections can involve node (1,1), since all of its
logical channels are already in use. If a new long-lived connection is opened at runtime, the
source node must insure that there are sufficient logical channels along the projected route. For
example, if nodes (0,1) and (1,2) both attempt to open a connection to node (0,2) as shown by
the dashed lines in Figure 5.1, only one connection will succeed since only one logical channel
remains free on node (0,2).

0,1 0,3

1,3

0,0 0,2

1,0 1,1 1,2

Logical channel 1

Logical channel 2

Figure 5.1: Example of connections and logical channel usage. The solid lines
show connections. The dashed lines show attempted connections.

On each iWarp communication agent there are 20 logical channels, but some logical channels
are reserved by the runtime system and other communication packages, so fewer than 20 logical
channels are available for the program’s connections. These logical channels are the major
limiting communication resource on the iWarp system.

5.1.2 T9000

The INMOS T9000 processors and C104 routing chips are used the create the latest generation
of transputer systems. The processors are connected via an interconnection network of routing
chips. Each routing chip is a 32� 32 crossbar switch. These switches can be used to create
most common network topologies: multi-stage network, torus, crossbar, hypercube, etc.

5.1 Examples of communication resources 79

6

3
4

5

1

(b)

5 4

6

1

3

14:4
4

5:6 3:4

6:6 3:3

1:1 1:1

input

right

left

1

4:5

1:1

(a)

10 2 3
0 1 2 3

Figure 5.2: The graph (a) shows requested communication pattern. The graph
(b) rewrites communication pattern so intervals are made clear.

Connections on this system are implemented byvirtual channels[Dal92]. Each processor on
this system can support an effectively infinite number of virtual channels. The virtual channel
state information is stored in a table. When the virtual channel is used, the table is referenced
and the data is multiplexed over the corresponding physical link. The size of the endpoint
virtual channel table (and number of active virtual channels) must be limited by the size of the
endpoint memory, but the routing switches impose a greater restriction on the number of virtual
channels, since each routing switch can only support a limited number of different routes.

The switches use interval tables for routing[vLT87]. At the switch, each output channel is
represented by a range of numbers, k:k+d. A packet is redirected along a particular channel if
the packet ID is in the labeled interval. The same interval can represent several output channels
in a switch, and the matching packet is redirected along the first available channel. Intervals that
guarantee deadlock-free routing for general communication patterns can be calculated for most
common topologies. In addition, given a specific communication pattern, the compiler can in
many cases create a set of routing tables that are specialized for that communication pattern.

Figure 5.2 shows how specialized interval tables can be calculated for a simple ring topology.
The graph in Figure 5.2(a) is the communication pattern. For a ring, the routing table entries
are divided into three sets according to the destination of the arc: left, right, and input. The
graph in Figure 5.2(b) shows the communication pattern redrawn with each arc ending in the
appropriate set for each node. The route labeled 4 in Figure 5.2(a) starts in the right set of node
0, goes to the right set of node 1, and ends in the input set of node 2. With this new graph,
ranges for each set of routing table entries can be calculated based on the routes needed for the
communication pattern.

For communication patterns that form a cycle, a single interval range in a given direction
may not be sufficient. Consider the communication pattern and interval labeling in Figure 5.3.
The interval for the right set on node 0 must be split into two ranges. Node 0 must forward
connections labeled 1 and 4, while redirecting the connection labeled 3 to the processor. This
splitting must occur on some node because the connections between the right sets form a cycle.

Since space in the interval tables is limited, it may not be possible to have routes set up
for all requested implementation functions. In this case, it may be necessary to divide the
communication patterns into phases that can be routed together or leave some default (but not
necessarily optimal) route table entries for a fall back position. By calculating the routing table
information, the compiler can directly manage and specialize the use of the limited routing table
resources.

Chapter 5. Communication code selection with limited resources80

1 3

24

input

1

2

4:4
1:1 1:2 2:3 3:4

2:21:14:43:3

1

2 3

3

4
right

0 321
(b)

0 2 31
(a)

Figure 5.3: Communication pattern that requires more than one interval over one direction.

vc1

vc2

vc1

vc2

Figure 5.4: Two virtual channels routed over the same physical route utilize all
physical bandwidth over that route. A single virtual channel must wait for flow
control acknowledgments, so it cannot utilize the complete physical bandwidth.

The communication hardware enforces tight synchronization between the sender and re-
ceiver on each virtual channel. Each 32 byte packet must be acknowledged by the receiver
before the next packet can be sent. By requiring each packet to be acknowledged before the next
packet is sent, the system limits the amount of space needed to buffer messages that arrive too
soon. One limitationof this tight channel synchronization is that bandwidth can be wasted while
the sender is waiting for acknowledgments. In addition to the message transit time, the equation
for sending time must include the acknowledgment time and packet startup time. The equation
for the time to send a message ofm bytes isT (m) = 8�Tt�m� (1+(2�D+1)=32), where
Tt is the per bit transit time andD is the number of switches to traverse. The peak physical link
bandwidth is 100 Mbit/s. ForD = 8, the peak bandwidth drops to 78 Mbit/s, and whenD = 16
the peak channel rate drops to half of the peak physical link rate. For connections over many
switches, the compiler can send the message data over several virtual channels routed on the
same physical connection. Whenever one virtual channel is waiting for an acknowledgment, the
other virtual channel can be sending a packet, so the physical network is used to its full potential.
Figure 5.4 shows an example of data sent over two virtual channels vc1 and vc2 that are routed
over the same physical connections. If more physical connections are available, the compiler
can also split data transfers over multiple physical connections. The benefits of using multiple
physical channels depend on how fast the processor can send and receive data. A compiler
can certainly calculate this physical channel resource scheduling given communication pattern
information and the target system’s processor and router parameters.

There are many communication resources in this Transputer system, including endpoint
memory for virtual channel tables, routing table entries, and link bandwidth. Depending on the
system configuration, any one or more of these resources can be the limiting communication
resource.

5.1 Examples of communication resources 81

5.1.3 ATM networks

The asynchronous transfer mode (ATM) network standard is a current attempt to unify voice,
video, and data traffic over a common network protocol. In the ATM approach, switches
form the interconnection fabric (instead of broadcast media as in Ethernet networks). The
ATM standard usesvirtual connectionsto separate data streams with different transmission
characteristics. Data that travels over virtual connections is divided into small fixed length
packets (53 bytes with 48 bytes payload).

With virtual connections, ATM adapters and switches provide hardware support for a
connection-based data protocol. The basic elements of the standard are in place and there are
several commercial ATM products, but many aspects of the standard are still evolving and the
subject of research[BCS93]. These evolving issues include quality of service guarantees[Tur92]
and signaling control[CW92] (connection creation and control).

Communication resources are made explicit by quality of service (QOS) guarantees. Each
connection can request a QOS guarantee that bounds bandwidth, latency, or jitter (degree of
communication variability). For parallel computation, bandwidth and latency are the most
interesting variables. While the ATM switch can support a large number of connections, it has
a far more limited amount of bandwidth it can provide. There are a number of schemes to
efficiently describe bandwidth and latency requests for “bursty”traffic. The compiler can derive
additional information to aid these resource management algorithms.

After the communication analysis phase, the compiler has information about communication
patterns. The compiler also has information about which communication patterns are active
at the same time (i.e. the phases of communication). To reserve communication bandwidth,
the connection must give some indication of the amount if bandwidth it requires when it is
opened (e.g. maximum or average bandwidth). If the compiler can indicate that groups of
communication patterns are disjoint, the system may be able to more intelligently guarantee
bandwidth. Alternatively, the compiler can change the QOS bandwidth guarantees between
phases. For example, the system in Figure 5.5 will only allow guarantees for 60 MB/s per link.
If the connections in Figures 5.5(a) and (b) are opened individually, they cannot all be open
at the same time. Instead one set must be used and closed before the other can be opened.
However, if the compiler can indicate that the two sets of connections are from disjoint phases,
the admission control should allow both sets to be open simultaneously.

If a connection does not receive the amount of bandwidth it requested, the compiler-
generated code can use the amount of bandwidth actually reserved to inject data at the appropriate
rate. If the system does not have hardware flow control, switches may drop data that arrives too
quickly. Sending data at a slower rate is more efficient than re-sending many dropped packets.

However, if the system does have hardware flow control, connection-based communication
does not require additional control messages to request data. Instead data that arrives before
the node is ready to receive it will stay in intermediate switch buffers and back up through the
network. This is similar to connection-based communication on iWarp.

If the system allows nodes to specify routes, the compiler can use the communication
pattern information to schedule use of the communication links. However, this implies that the
compiler knows the target topology, which is unlikely for a network of workstations.

ATM networked systems also have a number of different communication resources includ-

Chapter 5. Communication code selection with limited resources82

switch
ATM

N3 N2

N1N0

switch
ATM

N3 N2

N1N0

(a) (b)

Figure 5.5: Two disjoint sets of connections the parallel application wants to
open. Each connection requires 40 MB/s maximum bandwidth. Each link can
guarantee up to 60 MB/s maximum bandwidth.

ing physical link bandwidth and switch table space. The limiting communication resource
depends are the particular system configuration and how some of the evolving ATM features
are eventually implemented.

5.1.4 Paragon

The Intel Paragon is the latest generation of the iPSC series of parallel computers. The nodes on
this system are connected in a two dimensional mesh by routing chips. All routing choices on
this machine are fixed by the routing chip hardware, so the parallelizing compiler cannot choose
the route of a connection. However, routing is deterministic, so the compiler can use information
about the router to determine the message schedule of each node. For example, Scott [Sco91]
describes an all-to-all communication algorithm that in theory optimally uses the Paragon’s
network bandwidth. This algorithm knows which routes the Paragon uses and schedules
communication in phases, so the routes of messages in each phase use all communication links.
By using such techniques, the compiler can manage the network bandwidth resource. This is
similar to the physical channel scheduling that the compiler can do for the transputer system.

The Paragon does not have direct hardware support for connections, but connection-based
communication can be implemented on top of the packet-based communication hardware as
described in Section 2.3.3. Following a connection-based protocol provides structure that is
beneficial for software resource reservation and synchronization. Each open connection has
some state and buffer space associated with it, and keeping buffers for a large number of
connections may not be feasible. A compiler that generates connection-based communication
will need to trade off communication speed with the number of active connections. In this case,
endpoint memory is a limiting communication resource. For systems with a small number of
nodes, this is probably not a factor, since each node has at least 16 MBytes of memory, but as
the system size and the number of potential communicating nodes increase, endpoint memory

5.1 Examples of communication resources 83

usage may become a limiting factor for static communication resource reservation on Paragon
systems.

5.1.5 Flash

Flash is a proposed distributed shared memory machine[K+94]. Each node of the system
includes a specialized protocol co-processor called the MAGIC chip that takes care of data
movement and cache coherence policies. Since the MAGIC chip is programmable, Flash can
flexibly support a number of different cache and data movement policies.

The differences between the bulk transfers and traditional cache coherence protocols are dis-
cussed in [HGDG94]. In addition to these protocols, the system programmer can create efficient
protocols for other communication patterns. For example, a replication protocol could imple-
ment a more efficient algorithm than the naive one-to-many approach, and a simple reduction
communication pattern could incorporate some of the computation into the co-processor.

The protocol processing handlers are stored in main memory, but the handlers are accessed
from a jump table on the co-processor at runtime. Depending on the size of the jump table, the
number of active protocols could be limited.

The protocol processor uses the memory address of a data item to determine which coherence
or data transfer protocol to use. If a different protocol is more appropriate for the data array at
a different point in the program, the program can re-map or copy the data array or use a single
protocol that is not optimal for either communication pattern but reasonable for both.

Based on the Flash design, we can identify a couple potentially limiting communication
resources: limited number of active protocols and limited number of protocols per memory
location.

5.1.6 General communication resources

This section has described examples of communication resources on several current and up-
coming parallel systems. In the static resource reservation model, these resources are exposed
to the programmer or compiler for more efficient use and scheduling.

For regular communicationpatterns on symmetricsystems such as torus and hypercubes, the
resource requirements are quite uniform over the system. About the same number of resources
are required on each node or switch. For other systems (such as meshes), there may be hot spots
in the network that are used more frequently. In this case, the resource requirements on the
“hot” nodes or switches are representative of the resource requirements for the entire system.

For both types of systems, it is reasonable to use a single number to approximate the re-
quirements for each limiting resource ofeach communication implementation on the system. If
the node (or router) with the maximum requirements changes between different communication
implementations, it is not reasonable to simplify the resource requirements to a single number.
Instead, the compiler must track resource requirements on all nodes to ensure peak resource
usage over several communication patterns. Section 5.4 addresses extensions to the resource
management problem that address multiple limiting resources and multiple representative nodes.

For iWarp and the other systems discussed in the chapter, it is reasonable to assume that
resource requirements on a single node or router represents the resource requirements of system-

Chapter 5. Communication code selection with limited resources84

Pi ith communication pattern
Ci Number of timesPi is executed
Fij Function that implementsPi
Rij Number of resources required byFij
Vij Value ofFij (a function of execution time)

Table 5.1: Summary of the parameters used to define the communication resource problem.

wide, regular communicationpatterns. On the torus-based iWarp, resource use is relatively even
on the nodes, so the resource use on any node is representative of the system as a whole. On an
ATM network with a less regular topology, the bandwidth of a single “hot” link represents the
limiting case of system-wide communication steps.

5.2 Resource problems

Communication on parallel systems consumes resources from a limited pool. The resources are
released after each message in the dynamic resource reservation model, but the resources are
reserved between messages in the static resource reservation mode. The specific resources vary
between different systems. By abstracting away from the specific communication resource,
one can define general resource management problems for a compiler to solve when targeting
communication for the connection-based model.

In this section, I make two simplifying assumptions about resource requirements. First,
the algorithms in this section approximate the resource requirements of entire communication
pattern by the resource requirements of a single node or link. The previous section describes
the rationale for this approximation. Second, the algorithms in this section assume that there is
a single limiting communication resource. Section 5.4 discusses how the resource management
algorithms can be adjusted when these resource model restrictions are loosened.

I begin by defining the compiler’s communication model introduced in Chapter 2 more
precisely. After communication analysis, the compiler has a list ofN communication patterns,
P1::PN that occur in the program. Each communication patternPi is associated with a location
in the original program and is executedCi times. Each communication patternPi can be
satisfied by one ofh alternative implementing functionsFi1::Fih.

Each functionFij has a cost and a benefit associated with it. The cost isRij, the number
of limiting communication resources needed to implement functionFij . The benefit isVij , an
estimate of the execution time ofFij based on the message size and machine size. Each node
on the system hasR communication resources available, and all communication resources can
be reclaimed by a phase switch that executes in timeSw. Table 5.1 summarizes these resource
problem parameters.

Given this model, the compiler has two resource problems to solve. Thefunction packing
problem determines which functions should be used to implement the required communication
patterns. This problem attempts to minimize the expected communication time given a limited
set of communication resources. Thephase divisionproblem uses program control flow infor-

5.2 Resource problems 85

Communication
Patterns

Target Architecture
Resource Limits

Communication
Code Generation

Multi-phase
Function Packing

Function
Packing

Phase
Division

d << Sw d >> Sw
d ~ Sw

Figure 5.6: Relation between communication resource problems and the cost
of phase switchSw and average performance difference of different communi-
cation implementationsd.

mation to determine how the required communication patterns should be divided into phases to
minimize the cost of reclaiming resources assuming an implementation is already selected for
each pattern. The compiler can solve both problems simultaneouslyby selecting the appropriate
implementations and phase divisions in themulti-phase function packingproblem.

The relation between the phase switch time and implementation execution time differences
on a particular architecture directs which problems must be solved. Assume the compiler
considers two functions that perform in timeV andV + d on a machine with a phase switch
time of Sw. Then the possible execution times, depending on resource availability, areV ,
V + d, andV + Sw 1. If d � Sw there is no reason to ever use the slower function, because
the execution time of doing the phase switch still leaves room for improvement using the faster
though more expensive function. Therefore, the compiler should only consider functions where
d < Sw .2

The cost of the phase switch on the target system directs the compiler towards the resource
allocation problems that must be solved. Figure 5.6 shows how the phase switch timeSwand
the average performance differenced dictate which problems must be solved. If phase switches
are fast, it makes sense to always use the fastest communication function, so only the phase
division problem needs to be solved. If phase switches are slow, it makes sense to optimize
for the cheapest function in resource usage so only the single phase function packing problem
needs to be solved. Considering both the function packing and phase division problems is
only an issue if the execution time of a phase switch is about the same as the communication
performance differences.

The number of nodes in the target system and the size of the data set also affect which
problem should be addressed. The phase switch on most systems will increase as the number
of nodes increase, and the difference in implementation times will change as the data set size
changes.

1Depending on the program structure, two phase switches may be required. In this case, the optionV + Sw is
replaced byV + 2� Sw .

2Not strictly true, because the phase switch synchronizes the machine before changing the communication state.
Avoiding synchronization may be a factor for programs that are inherently asynchronous, but this is beyond the scope
of this thesis.

Chapter 5. Communication code selection with limited resources86

5.2.1 Function packing

The problem of choosing implementations for communication patterns givenR resources can
be optimally solved by a dynamic programming algorithm[CLR90]. Dynamic programming
is a variation of the divide and conquer approach that uses tables to save intermediate results.
Each entry is calculated using input information and previously calculated entries. As the table
entries are calculated, the algorithm stores which inputs were used for each entry. After the table
has been filled, the algorithm traces back from the last entry to find which inputs contributed
to the minimal result. Since table entries are calculated exactly once, the computation time is
proportional to the size of the table.

The dynamic programming algorithm for the function packing problem minimizes the total
communication time for the available communication resources. The algorithm calculates
entries in anN � R tableT . Each row is associated with one communication pattern. Entry
T [i; j] contains the expected time to execute patternsP1::Pi givenj communication resources,
i.e.

Pi
k=1Rkx � j whereFkx is the selected function for patternPk. If it is not possible to

satisfy all patterns inj resources the entry is set to1. EntryT [i; j] is calculated from the cost
information for various implementations ofPi and values in the previous row.

The first row of the table is initialized as follows:

T [1; j] = C1� V V = Minhk=1(V1k) such thatR1k � j

T [1; j] =1 Rik > j for all 1� k � h

To complete rowi, considerPi and its satisfying functionsFi1::Fih. Entry T [i; j] is
calculated to determine the best function to use withj resources available. If no function fits,
the entry is1.

T [i; j] = Minhk=1(T [i� 1; j �Rik] + Ci � Vik)

The algorithm also notes which implementationFi;k is used to calculateT [i; j].
Completing the table takesO(hNR) steps. After completing the table,T [N;R] contains

the minimal sum of expected communication times forN patterns inR resources. By tracing
back the choices that lead toT [N;R], the algorithm can determine which set of implementing
functions to use.

Figure 5.7(a) shows the flow graph of the communication patterns for a simple program.
Figure 5.7(b) shows a table of the alternative communication functions with their costs and
benefits for each pattern. Each communication pattern can be implemented using the basic
message passing system with no more communication resources. This alternative isFi;1 for
each patternPi. The other alternatives use additional communication resources to improve
performance.

Figure 5.7(c) shows the table that the dynamic programming algorithm calculates for this
example. Each row represents a pattern and each column represents a number of resources. For
this example we considered a maximum of R=10. Filling in the row forP1 is simple. The only
function that fits in columns 0 to 7 isF1;1. For the remaining columns,F1;2 is faster and fits in
at least 8 resources. Similarly, filling in columns 0 and 1 forP2 requires no choices, onlyF2;1

fits. For entryT [2; 2] there are two alternatives,T [1; 2]+C2�V2;1 = 100+10�25= 350 and
T [1; 2�2]+C2�V2;2 = 100+10�15= 250.F2;2 provides the minimum, so the second option
is used. Similarly, calculating the value ofT [2; 8] requires finding the minimumof three options:

5.2 Resource problems 87

Broadcast

All-to-all

Shift

1

1

P3

P2

P1

10

P1; C = 1
R V

F1;1 0 100
F1;2 8 10

P2; C = 10
R V

F2;1 0 25
F2;2 2 15
F2;3 6 10

P2; C = 1
R V

F3;1 0 30
F3;2 3 20

(a) (b)

0 1 2 3 4 5 6 7 8 9 10
P1 100 100 100 100 100 100 100 100 10 10 10
P2 350 350 250 250 250 250 200 200 200 200 160
P3 380 380 280 280 280 280 230 230 230 230 190

(c)

Figure 5.7: Simple function packing example using three communication pat-
terns. Part (a) shows communication flow from the original program. Table (b)
shows the costs and benefits of the alternative functions. Table (c) shows the
pattern versus resource availability table that results from the function packing
algorithm.

T [1; 8]+C2� V2;1 = 260,T [1; 8� 2] +C2� V2;2 = 250, andT [1; 8� 6] +C2� V2;3 = 200.
Entry T [3; 10] shows the minimum sum of expected execution times for these three patterns
given 10 resources per node. After tracing back, we find that the functions used for this case
areF1;2, F2;2, andF3;1.

If Pi andPj are instances of the same communication pattern, they can use the same
communication resources. To be optimal, the execution counts of all the same patterns must be
added together, so the resource requirements are properly weighted. Consider a program that
performs a row shift communication pattern in two separate statements. Both instances of the
row shift communication can use the same communication resources.

If the patternsP1::PN are distinct, the patterns can be entered into the table in any order.
The solution for each patternPi builds on the solutions calculated for the previous patterns
P1::Pi�1. This problem exhibits an optimal substructure, and indeed the dynamic programming
algorithm finds an optimal solution if patternsP1::PN are distinct. Therefore, if the original
N required patterns can be condensed into a list ofM distinct patternsQ1::QM , theQ1::QM

patterns can be used to find the optimal function packing.
The example in Figure 5.8 shows how optimality is destroyed when instances of the same

pattern are not combined. Figure 5.8(a) and (b) shows three patterns whereP1 andP3 are
really instances of the same pattern. The function packing algorithm calculates a minimum
expected time of 11 usingF1;1, F2;2, andF3;1. Figures 5.8(c) and (d) show the case where
the two instances of the same communication patternP1 andP3 are considered together. This
instance of the function packing algorithm only considers two patternsP 01 = P1 [P3 andP2

with execution countsC1 = 4 andC2 = 3. This results in a lower expected time of 10 using

Chapter 5. Communication code selection with limited resources88

P1; C = 2
R V

F1;1 1 2
F1;2 3 1

P2; C = 3
R V

F2;1 1 2
F2;2 3 1

P3; C = 2
R V

F3;1 1 2
F3;2 3 1

1 2 3 4 5
P1 4 4 2 2 2
P2 1 10 10 7 7
P3 1 1 14 14 11

(a) (b)

P 01; C = 4
R V

F1;1 1 2
F1;2 3 1

P 02; C = 3
R V

F2;1 1 2
F2;2 3 1

1 2 3 4 5
P 01 8 8 4 4 4
P 02 1 14 14 10 10

(c) (d)

Figure 5.8: Function packing algorithm with a duplicated communication
pattern (P1 = P3). Table (a) shows the costs and benefits for alternative
functions for the three patterns. Table (b) shows the values calculated by the
function packing algorithm consideringP1 andP3 separately. Table (c) the
costs and benefits withP1 andP3 considered together asP 01. Part (d) shows
the results of the function packing algorithm with the combined patterns.

functionsF1;2 andF2;1.

5.2.2 Phase division

The compiler can use a greedy algorithm to divide the communication requirements of a program
into phases if an implementing function has already been chosen for each communication
pattern. The greedy algorithm works by building a graph out of the pattern information. In the
initial graph,each node represents a pattern instance. Two nodes are connected by an edge if
the program flow control indicates that patterns can execute one after the other (i.e. they can be
temporally adjacent). Each edge is weighted by the number of times the program moves from
one pattern to the other.

For example, consider the pseudo-code in Figure 5.9(a) that contains four communication
patterns. These four communication patterns can be represented by the graph in Figure 5.9(b)
where the resource costs of each pattern are listed to the left of each node.

By contracting edges, the greedy algorithm can transform the initial graph into a new graph
where each node represents the set of communication patterns in a communication phase, and
the edges represent necessary phase switches. Figure 5.10 shows the outline of this algorithm.
The algorithm merges nodes if the communication patterns contained in both nodes can be
implemented in the set of available resourcesR. The algorithm attempts to merge nodes
connected by the edges with the largest weights first. This edge ordering biases phase divisions
out of loop nests.

Assume the initial graph of communication flow hasN nodes andE edges, and assume
there areM unique communication patterns (M � N). The cost of sorting the edges is

5.2 Resource problems 89

transpose
Loop 100

shift left
right right

reduction

transpose

shift left

shift right

reduction

100
100

1

1

R4 = 4

R3 = 2

R2 = 2

R1 = 9

shift left

shift right

reduction

transpose

1

R2 = 8

R1 = 9

(a) (b) (c)

Figure 5.9: (a) Pseudo communication code. Initial (b) and final (c) graphs
for the greedy algorithm example.

GreedyDivision(edgelist)!
Sort edgelistfrom high to low value
for each e in edgelistdo

EdgeContract(e, R)
endfor

EdgeContract(e,R)!
if ResourceUsage(head(e) [tail(e)) � R then

tail(e) head(e) [tail(e)
head(e) tail(e)

endif

Figure 5.10: Pseudo-code for the greedy phase division algorithm.

Chapter 5. Communication code selection with limited resources90

100

99 99

5

5

2 2

99 99

2 2

10

(b)

100

5

9

(c)

(a)

R=10

Figure 5.11: Example of non-optimal greedy edge contraction. (a) shows
the initial graph with edges labeled by weight and nodes labeled by resource
requirements. Given 10 resources (b) shows the phases that result from con-
tracting the heaviest node first. (c) shows the phases that result from contracting
the lighter nodes first.

O(E logE). If each node contains a lengthM bit-vector that indicates whether a particular
communication pattern is contained in the node, then calculating the resource usage of a union
of two nodes is anO(M) operation. Therefore, the cost of the entire phase division algorithm
isO(E logE)+O(EM). If the class of input graphs is not restricted,E isO(N2

), but graphs
derived from well-structured programs tend to have a relatively low degree, soE is better
approximated byO(N). Scientific programs are generally well-structured, so this algorithm
operates inO(MN) time for scientific programs.

By applying this greedy algorithm givenR = 10 total resources to the example in Figure 5.9,
the graph in Figure 5.9(c) remains. In the first step, the heaviest edges between the shifting
patterns are contracted. Since the edges are undirected, both edges between the shifting nodes
are contracted in the same step. Then the only other edge that can be successfully contracted
is the one to the reduction pattern. Therefore, two phases remain, one for the transpose and
another for all the other communication patterns, so only one phase switch is needed.

Contracting the most expensive arc first is a reasonable heuristic to keep phase switches out
of deeply nested loops, but since both the edges and the nodes have values, this greedy algorithm
does not always produce an optimal solution. Figure 5.11 shows a case where contracting two
edges with smaller weights yields a better division than contracting the heavier arc first.

While the algorithm is not optimal for general graphs, we can make stronger statements
about the graphs that result from the scientific programs considered in this thesis. The control
flow in these data parallel programs primarily results from loops. In the arguments that follow,
we consider communication pattern graphs that result from programs with loops andwhere
statements for control flow. For this style of data parallel program,if statements tend to be
used for error checking (where communication along the alternative branch does not matter)
or for higher level control flow (e.g. checking whether the iterative solution is within the error
bounds).

By looking at the most deeply nested loops first (i.e. contracting the most heavily weighted
edges), the greedy algorithm can be divided into a series of steps of assigning phases to the

5.2 Resource problems 91

LoopDivision(looplist)!
Sort loop nests in looplist from high to low iteration counts
for each loop in looplistdo

phaseset BodyDivision(loop)
Replace loop in enclosing loops with FirstPhase(phaseset)

and LastPhase(phaseset)
endfor

Figure 5.12: Pseudo-code for the per loop phase division algorithm.

patterns in the most deeply nested loop not assigned so far. The patterns in this loop can be
viewed as weighted nodes connected by a ring of uniformally weighted edges. The previously
contracted loops nested in this loop can be modeled as one or two nodes. Given an algorithm
for assigning phase divisions within one loop body, the pseudo-code for this algorithm is shown
in Figure 5.12.

The prototype compiler also uses the naive greedy approach over the loops. The simple
greedy method is not optimal over evenly weighted arcs that result from loops. For loops of
less than four nodes, the greedy approach will find the optimal phase division. Since all nodes
are neighbors, the order of edge contraction is unimportant.

For these larger loops, the order of edge contraction does matter. In this case, For the greedy
approach can introduce at leastbn=4c extra phases over a loop ofn nodes. By contracting
one edge incident on a node, we may prevent the other edge incident on that node from begin
contracted. Consider a loop of four nodes: A, B, C, D, where each edge can be contracted,
except the arc from D to A (see example in Figure 5.13). Depending on which edge incident
to C is contracted, either two phases or three phases are required. By repeating this pattern,
we can construct cases, where the order of arc contraction can vary the number of phases
by bn=4c. While there are cases where naive arc contraction can be costly, the number of
communication patterns in each loop of the programs we encountered were relatively small.
Section 5.3 discusses the performance of the greedy phase division algorithm.

Lemma 1 Given a graphG(N;E) of n weighted nodes connected by a ring of uniformally
weighted edges, a new graphG0(N 0; E0) that minimizesjN 0j while bounding the weights of
nodes inN 0 toR can be formed by contracting edges ofG in O(n4

) steps.

Dynamic programming can optimally solve this flat phase division problem inO(n4
) steps.

Given a ring ofn nodes, we can fill inn(2n � 1) entries such that entryT [i; j] contains the
set of optimal phase divisions for patternsPj toPj+i. The last row of the table contains phase
divisions for all possible sequences of the ring.

There may be several valid ways to divide a sequence into an equivalent number of phases.
For example, consider a sequence of four nodes with the following weights:R=2,R=3,R=3,
R=3. Given a bound ofR, there are two divisions into two phases: (R=2; R=3)-(R=3; R=3) and
(R=2)-(R=3; R=3; R=3). For the purposes of filling in the dynamic programming table, only

Chapter 5. Communication code selection with limited resources92

A
r = R-k

B
r = k

C
r = k

D
r = R-k

(a)

A
r = R-k

D
r = R-k

B, C
r = 2k

(b)

C,D
r = R

A,B
r = R

(c)

Figure 5.13: Example four node loop (a) where order of edge contraction
affects final number of phases. When the edge from C to B is contracted first
(b), three phases are required. When the edge from C to D is contracted first
(c), two phases are required.R is the maximum number of resource allowed
per phase, andk < R=2.

5.2 Resource problems 93

mindiv i+1
For eachg in T[i-1,j+1] do

g Contract(Edge(Pj , FirstPhase(g)), R)
if DivisionCount(g) < mindiv then

savediv f g g
mindiv DivisionCount(g)

else ifDivisionCount(g) = mindiv then
savediv savediv[g

endif
endfor
For eachg in T[i-1,j] do

g Contract(Edge(LastPhase(g), Pj+i), R)
if DivisionCount(g) < mindiv then

savediv f g g
mindiv DivisionCount(g)

else ifDivisionCount(g) = mindiv then
savediv savediv[g

endif
endfor
T[i,j] FirstLastUnique(savediv)

Figure 5.14: Pseudo-code to calculate the set of minimal phase divisions for
patternsPj toPj+i.

differences in the first and last phases of the sequence are important. For example, given eight
nodes A to H, both of the following divisions are equivalent for passing onto later rows: (A,B)-
(C,D,E)-(F,G)-(H) and (A,B)-(C,D,E,F)-(G)-(H). To check all phase division possibilities, the
dynamic programming algorithm must pass on all minimal phase divisions that differ in the first
and last phases, which is bounded byO(d2

) < O(n2
) givend phases.3

The first row of the table contains the resource requirements of each communication pattern.
Each subsequent row relies on two entries from the previous row. To calculate the phase divisions
for patternsPj to Pj+i (T[i,j]), we examine the phase divisions for patternsPj to Pj+i�1 (T[i-
1,j]) andPj+1 to Pj+i (T[i-1,j+1]). To fill in entry T[i,j], the algorithm examines alli pattern
sequences that can be constructed from contracting edges fromPj to each possible division
in T[i-1,j+1] and from contracting edges fromPj+i to each possible division in T[i-1,j]. The
algorithm determines the minimum number of phases required and saves all minimum count
phase divisions that differ in the nodes required in the first and last phase divisions. Figure 5.14
shows this calculation in more detail. Since there areO(n2

) table entries andO(n2
) potential

phase divisions to check for each entry, the time to fill out the table is bounded byO(n4
) steps.

The order of contracting edges in an node sequence affects the number of phases in the final

3More precisely at most (
Pd

i=1

Pmin(d;n�d+2�i)

j=1 1) phase divisions ofd phases are possible that differ only in

the first and last phases overn nodes.

Chapter 5. Communication code selection with limited resources94

sequence. This algorithm finds the optimal phase divisions for a sequence of nodes, because it
examines all phases that result from contracting edges in all feasible combinations.

In step one, filling entries T[1,j] considers the cases whereeach edge is contracted first. The
algorithm tries to merge all adjacent pairs of nodes.

Inductive claim:Each subsequent row T[i,j] attempts to contract all feasible edges in stepi.
Assume the claim holds for rowsi < k. Consider rowk. For each entry T[k,j], the algorithm

uses entries T[k-1,j] and T[k-1,j+1]. By the inductive claim, these entries were calculated by
trying all combinationsof contracting the edges in steps 1 throughk�1. By using the algorithm
in Figure 5.14, the algorithm attempts to contract all edges in stepk.

For each rowk, n � k entries are calculated. To calculate each entry, the edges at the
beginning of the sequence and at the end of the sequence are contracted, i.e. edges (1,2) through
(n-k,n-k+1) and edges (n-1,n) through (k-1,k) for the entire row. Fork � n=2, every edge is
examined. Fork > n=2, some edges are not examined because it is not feasible to contract
these nodes after stepk. For example, consider edgen=2�1. It does not make sense to contract
this node after stepn=2. The other edges in the sequence are divided by edgen=2, and these
divided edges can be contracted in parallel without affecting the other side. If edgen=2� 1 is
to be contracted last, it does not need to wait until after stepn=2. In general, it does not make
sense to delay contracting an edgej after stepMax(j; n� j), by a similar argument that edges
in the sequences divided byj can be contracted in parallel.

By filling in the table, the algorithm considers contracting the edges in all feasible orders.
Therefore, the algorithm examines all potentially minimal phase divisions, and T[n,1] contains
minimal phase divisions for the original sequence. To handle rings, we repeat the original
sequence, so all combinations of edge contractions over the ring are considered.

Phase division decisions made in the inner loops may affect the number of phase divisions
that are required in the outer loops. However, assuming the number of iteration counts required
in the inner loops is substantially more than the number of iteration counts required in the outer
loops, concentrating on the inner loops first results in the best global phase division.

Lemma 2 Given two nested loops, where the inner loop is executedx � y times and the outer
loops is executedy times, the outer loop must eliminatex phases for every one phase added to
the the inner loop.

Suppose the optimal phase division of the inner loop requiresd phases. By adjusting the
inner loop division tod + 1 phases, we may be able to better divide the phases of the outer
loop. The extra phase division in the inner loop results inx � y extra phase switches. We
must eliminatex phases in the outer loop to match the cost of the extrax � y phase switches.
Therefore, unless the inner loop countx is very small, biasing phase division to inner loops first
is the more practical approach.

5.2.3 Function packing in multiple phases

The algorithm described in Section 5.2.1 picks implementations for communication patterns
that minimize total communication time given a limited number of communication resources
in a single phase. The algorithm in Section 5.2.2 tries to minimize communication time by

5.3 Evaluation of resource management 95

dividing the program into phases assuming each communication pattern already has a fixed
implementation.

The dynamic programming algorithm in Section 5.2.1 can be augmented to both pick
implementations and divide the program into phases, but the results are no longer provably
optimal because instances of the same communication patterns must be considered separately.
Phases only make sense for communication patterns that occur in the same portion of the
program. Therefore, it is not reasonable to replace the list of program patternsP with the
unified list of program patternsQ, because the unified patterns do not preserve this temporal
locality.

By looking at the original pattern list and changing the table updating rules, the function
packing dynamic programming algorithm can be adjusted to insert phase switches where locally
beneficial. Since the communication patterns are not distinct, the order in which the patterns
are added to the table will affect the final result. We use the naive ordering of patterns based on
the statement numbering.

Since communication resources can be reused for two instances of the same function in the
same phase, each table entry must keep track of the set of functions used to calculate that value,
so the resource cost of a function is only charged once. These functions are stored in the set
T [i; j]:L. ThenT [i; j] is the minimum over all function alternatives of:

T[i-1,j] + Ci � Vik if Fik 2 T [i� 1; j]:L
T[i-1,j-Rik] + Ci � Vik if Rik � j

T[i-1,R] + Ci � Vik + G(Pi�1; Pi)� Sw

The first rule is used if a function to implementPi has been previously selected (and stored in
the set T[i-1,j].L). No additional resources are consumed, and T[i,j].L is set to T[i-1,j].L. The
second rule is used if the implementing function has not been previously selected. In this case
the function set T[i,j].L is assigned T[i-1,j-Rik].L [fFikg. The last rule is used if a new phase
is started for the implementing function. Since this rule reclaims all resources, the algorithm
uses the most optimistic value for implementing the previousi � 1 patterns, T[i � 1; R]. In
this case, the function set is reset tofFikg. FunctionG calculates how many times the program
execution moves fromPi�1 toPi. This number is calculated by looking at the loop structure of
the program and finding the least common loop that includes bothPi�1 andPi.

5.3 Evaluation of resource management

In this section, we evaluate the effects of two of the communication resource algorithms defined
in Section 5.2 on two example programs: a least squares program and an image analysis
program. Both programs are written in Fx and are executed on an 8� 8 iWarp system.

The limiting communication resource on iWarp is the logical channel. There are 20 logical
channels per node, but 5 are used by the runtime system. For the two example programs, all
statically reserved implementations cannot simultaneously fit in 15 logical channels, so another
5 channels must be used for the dynamic message passing system leaving 10 logical channels
for static connection-based implementations.

To develop a good cost model of communication on iWarp, I measured a variety of im-
plementations of a set a frequently occurring communication patterns over a range of message

Chapter 5. Communication code selection with limited resources96

sizes. From these measurements, I derived a quadratic execution time model for the different
implementations of these communication patterns based on the message size. The resource
management algorithms use these simple cost estimates to calculate the benefits of each imple-
mentation (Vij).

Figures 5.15 and 5.16 show the main communication steps of both programs and the iWarp
communication resource requirements for each connection-based implementation. Each pattern
can also be implemented by a dynamic implementation with no additional communication
resources. iWarp uses the deposit message passing implementation described in Section 2.3.3.
This implementation is optimized for compiler-generated communication. Only the resource
reservation and routing control differ between the static and dynamic implementationson iWarp.

The least squares problem uses a series of simple matrix operations to solve an over-
determined system of equations. Given an �m linear system ofA � x = b, the least squares
solution computesx = (AT � A)�1 � (AT � b). Figure 5.15 shows the basic operations of a
least squares program and the corresponding communication patterns. In this example, the
initial matrix A is distributed over two dimensions, and the vectorb is distributed over one
row. A transpose over two processor dimensions is needed to findAT . The program uses a
blocked matrix multiplication algorithm which requires nearest neighbor shifts. Gauss-Jordan
elimination is used to calculate the matrix inverse. The elimination requires replicating the pivot
row and column. Finally two matrix vector multiplications are performed to calculatex. Each
matrix vector multiplication requires a replication over one dimension and a reduction over the
other dimension. I evaluated this program executing onn �m input arrays wherem = n=2.

The image analysis program operates over an�n array of complex numbers. The main data
array is distributed by rows treating the node array as a ring. The image analysis program is a
three step program. The first step calculates a smoothing convolution. The second step performs
a two dimensional fast Fourier transform (FFT) by calculating one dimensional FFTs over the
rows, redistributing the array, and then calculating FFTs over the columns. Redistributing from
the row distribution to the column distribution requires an all-to-all communication pattern.
Finally, a sum is calculated over the entire array to determine the upper and lower bounds for
valid data. These steps are iteratedk times overk different input images.

5.3.1 Function packing evaluation

Figure 5.17 shows the absolute communication times that result from varying the communication
pattern implementations for the least squares and the image analysis programs. Figure 5.18
shows the normalized communication and computation times for both programs. In all graphs,
the line labeledAll connections shows the theoretical communication performance assuming
the fastest implementation can always be used. At the other extreme, the line labeledNo
connections shows the performance using only the default dynamic implementations (using
no additional communication resources). The line labeledAlgorithm’s assignment shows the
case where the function packing algorithm described in Section 5.2.1 picks the communication
pattern implementations given R=10 resources4.

4An iWarp node has 20 logical channels. Five are used by the runtime system, and five are used by the message
passing system, so 10 remain for connection-based scheduling.

5.3 Evaluation of resource management 97

Shift row

Shift column

Shift row

Shift column

Replicate row

Replicate column

1

Transpose

p

p p

1

1

p

1

m

m m

m

1

B = transpose(A)

C = inverse(C)

C = matrix_multiply(B,A)

v = matrix_vector(B,b)

x = matrix_vector(C,v)

n n
Replicate row

Replicate column

Reduce column

Reduce row

Resources/
Pattern node
Transpose 9
Shift row 2
Shift col 2
Replicate row 4
Replicate col 4
Reduce row 4
Reduce col 4

(a) (b)

Figure 5.15: Part (a) outlines the steps and communication patterns used in
evaluated the least squares program. The arrays are distributed over two
dimensions. Part (b) shows the number of communication resources required
per node for the best connection-based implementation for each pattern on an
8� 8 iWarp.

Chapter 5. Communication code selection with limited resources98

Shift right

Transpose

Shift left

Sum reducetotal = Sum(A)

Convolve(A,D,w)

col-FFTs(A)

row-FFTs(A)

k+w

k

k+w

kk

Pattern Resources/node
Shift left 3
Shift right 3
Transpose 8
Sum reduce 8

(a) (b)

Figure 5.16: Part (a) outlines the steps and communication patterns used in
the image analysis algorithm. The arrays are distributed over one dimension.
Part (b) shows the number of communication resources required per node for
the best connection-based implementation for each pattern on an8� 8 iWarp.

For the least squares program, the function packing algorithm picks the connection-based
implementations of the row and column replications and the row shift. The remaining patterns
use the default best dynamic implementation.

For the image analysis program, the function packing algorithm picks the connection-based
implementation of the transpose, and the shift and reduction patterns use the default dynamic
implementations.

Table 5.2 compares the total execution time of the function packing choices with the all
connection-based and all dynamic extremes. These numbers show that the function packing
algorithm choices are reasonably close to the all connection-based ideal and measurably better
than the dynamic default.

5.3.2 Phase division evaluation

The best way to perform a phase switch on iWarp is to synchronize the system and locally
copy in the new communication state. With this approach, the main cost of the phase switch
is the cost of synchronization. The best way to perform a barrier synchronization on iWarp
involves dedicating logical channels to the synchronization routine. Using this hardware-based
barrier synchronization, the phase switch time (Sw) on an 8� 8 system is no more than 2000
cycles or 100 microseconds. This is substantially less than the generally observed performance
differences of different pattern implementations. Therefore, by the argument in Section 5.2,
phase division is the problem that needs to be solved for an 8� 8 iWarp system that uses a
hardware-based barrier.

5.3 Evaluation of resource management 99

Least squares

■

■

■

■

●

●

●

●

▲

▲

▲

▲

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
ds

)

N

■ No connections

● Algorithm's assignment

▲ All connections

(a)

Image analysis

■

■

■

●

●

●

▲

▲

▲

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
ds

)

N

■ No connections

● Algorithm's assignment

▲ All connections

(b)

Figure 5.17: Graph of communication time for different implementation choices
of the least squares program (a) and the image analysis program (b). The line
label Algorithm’s assignment shows the performance of the programs that
use the function selected by the function packing algorithm assumingR = 10
resources are available.

Chapter 5. Communication code selection with limited resources100

Least squares

128 256 384 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

or
m

al
iz

ed
 ti

m
e

N

No connections

Algorithm's assignment

All connections

(a)

Image analysis

128 256 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 ti
m

e

N

No connections

Algorithm's assignment

All connections

(b)

Figure 5.18: Graph of normalized execution time for different implementation
choices of the least squares program (a) and the image analysis program
(b). The darker regions show computation time and the lighter regions show
communication time. The bar labeledAlgorithm’s assignment shows the
performance of the programs that use the function selected by the function
packing algorithm assumingR = 10 resources are available.

5.3 Evaluation of resource management 101

Least squares
Problem size All connections No connections

128 -3.7 % 10.0 %
256 -3.3 % 9.9 %
384 -3.0 % 9.0 %
512 -2.7 % 7.0 %

(a)

Image analysis
Problem size All connections No connections

128 -4.8 % 7.1 %
256 -3.0 % 3.0 %
512 -1.5 % 8.0 %

(b)

Table 5.2: Relative changes in total execution time of the least squares program
(a) and the image analysis program (b) using the communication choices of
the function packing algorithm. Entries are the percentage changes in total
execution time compared to using all connection-based implementations (as-
suming we had enough resources) and all dynamic implementations (using no
statically reserved communication resources).

Chapter 5. Communication code selection with limited resources102

Shift row

Shift column

Shift row

Shift column

Replicate row

Replicate column

1

Transpose

p

p p

1

1

p

1

m

m m

m

1

n n
Replicate row

Replicate column

Reduce column

Reduce row

R3=8

R2=8

R1=13

Shift right

Transpose

Shift left

Sum reduce

k+w

k+w k+w

k

k

R2=8

R1=14

(a) (b)

Figure 5.19: The dashed boxes enclose phases chosen by the greedy phase
division algorithm assumingR = 15 resources are available for the least
squares program (a) and the image analysis program (b). Each phase is
labeled with the number of resources it requires.

Figure 5.19 shows the phase divisions of the example programs that result from the greedy
algorithm described in Section 5.2.2. Since only connection-based implementations are used,
no resources need to be set aside for the message passing system, soR = 15 resources are
available in each phase.

The phase divisions for the least squares program result in two phase switches taking only
200 microseconds. The image analysis program requires two phase switches per iteration adding
3% to the communication time forn = 128 and less than 1% whenn = 512. In both cases, the
communication performance is very close to theAll connections option in Figure 5.17.

While phase switches are relatively fast on iWarp, there are measurable performance penal-
ties to the simple-minded approach of making each pattern its own phase and performing a
phase switch between each pair of patterns. In the least squares program, this simple-minded
phase division adds 70% to the communication time forn = 128 and 53% forn = 512. In
the image analysis program, two phase switches are already performed in each iteration, so the

5.4 Extending the resource model 103

Least squares
Problem size Greedy algorithm Naive

128 -0% -18.7%
256 -0% -17.2%
384 -0% -14.9%
512 -0% -12.7%

(a)

Image analysis
Problem size Greedy algorithm Naive

128 -0.7% -1.8%
256 -0.4% -1.0%
512 -0.2% -0.4%

(b)

Table 5.3: Effect of phase division selection on total execution time for least
squares (a) and image analysis (b). Entries are percentage change in total
execution time from the theoretical optimum of no phase divisions compared to
the greedy algorithm phase division (Greedy algorithm)and the naive approach
of adding phase switches between all pairs of patterns (Naive).

additional cost of adding a phase switch after every pattern is not so severe. Table 5.3 compares
the effects of the greedy and naive phase divisions on the total execution time for both programs
against the ideal case of no phase switches.

These measurements show that the simple phase division algorithm works reasonably well.
The cost of switching given the phases selected by the phase division algorithm is much lower
than the naive approach. A good phase division is even more important for machines without
hardware support for barrier synchronization.

5.4 Extending the resource model

The resource management algorithms described in Section 5.2 make two simplifying assump-
tions about the communication resource model: there is a single limiting resource and the
resource requirements of a single node or link characterize the resource requirements of the
entire system. Both of these restrictions can be loosened by extending the resource management
algorithms in similar ways.

While iWarp has only one real limiting communication resource, other systems may have a
number of potentially limiting resources. For example, communication on ATM networks may
be limited by both physical bandwidth and hardware connection table entries.

Assume the target system hasd limiting communication resources bound byR1; :::Rd. The
function packing algorithm can be extended by filling in ad+ 1 dimensional table instead of a
two dimensional table, where each resource is assigned a separate axis. This extended function

Chapter 5. Communication code selection with limited resources104

Figure 5.20: An alternative routing for a shift from the first column to the last
column that avoids hot spots in the center of the mesh.

packing algorithm takesO(hN
Qd

i=1Ri) steps, whereh is the number of alternative functions
andN is the number of unique communication patterns.

The greedy phase division algorithm can also be extended to consider multiple limiting re-
sources. Each alternative implementationhasd numbers that describe the resource requirements
for that implementation. When merging a node,d numbers must be checked per pattern instead
of one. Therefore, the extended phase division algorithm requiresO(dMN) steps, whereN is
the number of communication patterns andM is the number of unique communication patterns.

Assuming there is a single hot node or link that approximates the resource requirements of
the entire system may also be a false assumption on some systems. The hot node may vary
between different patterns, or some communication implementations may be clever and route
around the hot spots in the system. For example, consider the alternative routes in Figure 5.20
that route around hot nodes in the center of the mesh to send data from the first column to the
last column.

We can augment the function packing and phase division algorithms to understand multiple
hot links the same way we augmented them to consider multiple limiting resources. If there
are d nodes that can have the maximum resource load for all common patterns, then each
communication implementation must have the resource requirements on alld nodes defined.
The function packing algorithm can still be augmented with extra dimensions in the table,
and the phase division algorithm can use more information when merging the nodes. At the
extreme, the system may need information about resource requirements for every node (or link)
in the system. In this case, function packing takesO(hNRP

) steps and phase division takes
O(PMN) steps where P is the number of nodes (or links).

5.5 Chapter summary

This chapter described examples of limiting communication resources that exist on several
systems. By abstracting away the details of the specific resources, I revealed several sim-
ple problems that the compiler can solve to trade between communication resource use and
communication performance, and I described three simple algorithms that solve these resource
management problems.

My measurements on iWarp show that these simple algorithms yield reasonable results for
real programs. The benefits of intelligent phase division should be more apparent on machines

5.5 Chapter summary 105

like Paragon without hardware support for barrier synchronization. Barrier synchronization on
a 64 node Paragon system takes an order of magnitude longer than synchronization on the same
number of iWarp nodes.

However, the resource pressure is not nearly as severe for software resources in the
connection-based model on Paragon, so phase division is not an important problem on Paragon.
Instead, eliminating barrier synchronization is important for the dynamic, deposit message
passing model. The next chapter introduces an algorithm that determines when explicit syn-
chronization can be eliminated from the dynamic deposit model.

Chapter 5. Communication code selection with limited resources106

Chapter 6

Synchronization elimination in the
deposit message passing model

The previous two chapters concentrated on algorithms and data structures required to generate
communication code following the static resource reservation model. Communication generated
according to the dynamic resource reservation model can also benefit from information about
the communication patterns.

Our experience with the Fx compiler has shown that the deposit model is an efficient
example of the dynamic resource reservation model for compiler-directed communication
generation[SSO+95]. Chapter 2.3.1 describes how the deposit model requires synchroniza-
tion between the sending and receiving nodes to ensure safe communication. In this chapter,
we propose a method using only communication pattern and program knowledge to reduce the
amount of additional synchronization required. This method has been implemented in the pro-
totype compiler (shown as phaseDynamic control elimination in Figure 1.2), and we evaluate
the benefits of eliminating the redundant synchronization.

6.1 Synchronization requirements in parallel systems

Synchronization is needed for programs on parallel systems when two processes (or threads)
are operating on the same data location to ensure that the reader is using the proper value.
Figure 6.1(a) shows a writer and reader relationship under the shared memory model. Thread
one writes a location, and thread two reads that location twice. On the first read, it wants the
value before the write, and on the second read, it wants the value after the write. To ensure that
the reading constraints are maintained, a synchronization point is required after the first read
and before the write.

The remaining figures show the same situation under the distributed memory model using
different communication models. Figure 6.1(b) shows two threads in the traditional message
passing model. By buffering messages that arrive too early, this model ties thread synchroniza-
tion with data transfer. By using hardware or software control messages, the connection-based
model also ties data transfer with synchronization. Since the sending thread does not directly
modify a memory location on the receiving thread, no additional synchronization is required.

Figure 6.1(c) shows two threads using the deposit message passing model described in

107

Chapter 6. Synchronization elimination in the deposit message passing model108

read(x)

read(x)

write(x)

T2T1 T2T1

read(x2)

recv(x2)

read(x2)

write(x1)
send(x1)

T2T1

write(x1)

read(x2)

deposit(x1->x2) await(x2)

read(x2)

(a) (b) (c)

Figure 6.1: Example of synchronization requirements in three mem-
ory/communication models (a) shared memory, (b) explicit message passing,
and (c) deposit message passing. The extra synchronization points are shown
by the dashed line.

Section 2.3.1. Each processing element has a private address space, but the processing element
must directly write (i.e. deposit) into a remote address space. After the message is deposited, a
semaphore is updated on the remote node to notify the receiver that the new value has appeared.
Since the source thread directly changes values on the destination thread without direct action
by the receiving thread, a synchronization point is required after the first read and before the
deposit.

This chapter addresses synchronization in compiled data parallel programs that use the
deposit model for data transfer. The issues of synchronization analysis have also been ad-
dressed for other memory models and program models. Working in the shared memory model,
Subhlok addresses the problem of synchronization in Fortran 77 with parallel do and case
statements[Sub90]. He developed a data flow algorithm that determines whether the current
synchronization points in the program are sufficient to ensure that there are no data race con-
ditions. This algorithm can be used to optimize the number of required synchronization points
by iteratively removing synchronization points and re-running the data flow algorithm. By
concentrating on the data parallel computation model, I address a simpler problem domain, so
I am able to develop a more powerful synchronization elimination algorithm.

Tseng addresses barrier elimination for parallel programs compiled for a shared-memory
system using the SUIF compiler[Tse95]. Unlike traditional shared memory compilers, this
compiler performs analysis to determine how data and computation should be distributed over
the machine. Tseng developed a phase that analyzes the pattern of local and non-local memory
accesses to determine when barriers are unnecessary or when barriers can be replaced by cheaper
synchronization methods. In the deposit message passing model (unlike the shared memory
model), the receiving node knows when data has been updated, so my algorithm can be more
aggressive about using communication analysis to eliminate barriers.

In [DZO92], Dietz, Zaafrani, and O’Keefe propose a static scheduling approach to eliminate
the need for synchronization in some cases. However, their approach relies on a careful timing
analysis of the system and the program, and such timing accuracy is not reasonable on most of
today’s parallel systems because of variations at runtime due to cache misses, interrupt handlers,
and network congestion.

6.2 Synchronization requirements of the deposit model109

Is B in use?

No

Deposit into B

Node 1 Node 2

Figure 6.2: In general, nodes 1 and 2 must negotiate whether the target buffer
is available before node 1 can safely deposit onto node 2.

6.2 Synchronization requirements of the deposit model

The data parallel compiler generates computation organized into global “steps”. Within each
step, the compiler generates code that sends from and receives into disjoint buffer segments,
so the code within a communication step is guaranteed to access the communication buffers
correctly. Between steps additional communication may be necessary to ensure that target
buffers are ready to be overwritten. This synchronizing communication can be in the form
of explicit control messages or combined control messages such as barrier synchronization or
combining trees. Figure 6.2 shows the logical exchange required between nodes 1 and 2 to
guarantee that it is safe for node 1 to deposit data into buffer B on node 2. The Fx compiler
inserts barriers between communication steps to insure that this synchronization is maintained.

Depending on the sequence of communication patterns, this additional control information
can be implicitly piggy-backed on communication exchanges of previous steps. For example,
consider the successive over-relaxation (SOR) problem introduced in Chapter 4. In the parallel
implementation shown in Figure 4.1, bothA andB are distributed over a ring of nodes. Each
node owns a subregion of each array, and each node sharesoverlapregions with its neighbors.
In the overlap region, the nodes store duplicated data that is owned by the neighboring node but
is needed locally for the next computation step.

In the overlap shift, each node communicates with its two neighboring nodes, e.g. nodeP

exchanges data with nodesP + 1 andP � 1. Before statement 2a, nodeP has communicated
with its neighbors in statement 1a, so it knows that nodesP � 1 andP + 1 have at least
started executing statement 1. NodeP knows that its local portion ofB is up to date and safe
to send. Since statement 1b does not access the overlap region ofB andP � 1 andP + 1
have at least reached statement 1a, it is safe for processorP to deposit its new values forB.
Therefore, the second overlap shift can be executed without any additional control messages
or synchronization. By a similar argument, the first overlap shift does not require additional
synchronization either. In both cases, each node can use messages from previous communication
steps to know how far the neighboring nodes have progressed in the program.

Chapter 6. Synchronization elimination in the deposit message passing model110

Wait for depositstep k:

step k - x: Use b

step k: Deposit onto P

Deposit onto Qstep l:

step l: Wait for deposit

Node P Node Q

Store into b

Figure 6.3: Timeline of an example data exchange between nodesP andQ. Q
does not useb between stepsP can deposit intob with no additional control
messages.

6.3 Synchronization elimination algorithm

The ad hoc argument for the SOR example can be generalized to find unnecessary control
messages in any data parallel program. This section formalizes the conditions when previ-
ous communication steps can implicitly carry control information and describes a data flow
algorithm that finds where these conditions are met in the program

Figure 6.3 shows an example data exchange. At stepl of the program, assume nodeP must
send data to bufferb on nodeQ. To ensure thatQ is no longer using the current data inb, node
P must know thatQ has also reached stepl or some previous stepk and no longer requires the
old data. IfQ has sent a message toP in stepk and does not use bufferb until stepl, then node
P knows that bufferb is no longer being used and can send the new data without any additional
negotiation.

In the SOR example, nodeP + 1 sends data to nodeP at stepk = 1, and nodeP + 1 does
not use the overlap region of bufferb = B again until after stepl = 2. Therefore, nodeP knows
that it can safely deposit data into bufferb = B at stepl = 2 without additional synchronization.

These conditions can be defined by theBufferReadypredicate. The setBu�erReady l
encodes when it is safe to piggy-back the sequence information for statementl. For each entry
< P;Q; b >, nodeP can deposit data into bufferb on nodeQ with no additional control
messages. This set is defined in terms of the following predicates.

Predl The set of statements that are immediate predecessors of statementl.

Usedl(P; b) True if nodeP uses bufferb during statementl.

Sentl(P;Q) True if nodeP deposits a message onto nodeQ during statementl.

With these predicates, theBufferReadyset can be recursively defined as follows:

Bu�erReady l = f< P;Q; b > j 8k 2 Pred l : (6.1)

:Usedk(Q; b)^ (Sentk(Q;P)_ < P;Q; b >2 Bu�erReadyk)g

6.3 Synchronization elimination algorithm 111

This set can be calculated by a forward data flow algorithm1. Thegenset contains all pairs
of nodes that communicate in stepl combined with all arrays used in the computation. Each
communication in stepl can potentially carry synchronization information to subsequent steps.

gen(l) = f< P;Q; b > jSent l(Q;P)g = f< P;Q; � > jSentl(Q;P)g (6.2)

Thekill set contains all pairs of nodes and buffers inUsed l combined with all sending nodes.
Any array that is used on the receiving node kills any possibility that previous messages can be
used to piggy-back state information about the array.

kill(l) = f< P;Q; b > jUsedl(Q; b)g= f< �; Q; b > jUsed l(Q; b)g (6.3)

Set intersection is the confluence operator for this problem, so thein and out sets are
calculated from thegenandkill sets as follows:

in(l) =
\

k2Pred l

out(k)

out(l) = (in(l)[gen(l))� kill(l)

Initially, all in andout sets are the universal set, the set containing all triples. After reaching
the fixed point of the data flow computation,in(l) contains a conservative approximation of
Bu�erReady l.

6.3.1 Working with communication maps

Instead of working with each pair of nodes separately, the data parallel model lets the compiler
work more succinctly with communication maps. The triples of theBufferReadyset (<
P;Q;B >) are replaced with pairs< m; b >, wherem is a communication map that describes
the mapping from all processorsP to all processorsQ, andb is the target buffer. The data flow
equations can be changed to operate over communication maps instead of node pairs. Thegen
set includes all mapsm that describe communication patterns required in statementl.

gen(l) = f< m; b > j8P : (m(Q) = P)! Sentl(Q;P)g

For a< Q; b > in Used l, thekill set includes all maps that includeQ in their range.

kill(l) = f< m; b > j9P : (m(P) = Q)! Used l(Q; b)g

The same equations can be used to calculate thein andoutsets using the pairs of communication
maps and buffers. However, set intersection and union becomes slightly more complicated.

Taking the intersection and union of communication maps does not always result in a
simple, single communication map. All other communication maps are subsets of the all-to-all
communication pattern,�(p) = fqj0 � q < Pg., so the union of any mapm with � is �, and
the intersection ofm with � is m. For other combinations, our algorithm is conservative. For
union and intersection, the algorithm creates a compound communication map, which contains
a list of simple communication maps to intersect or union.

1This algorithm is presented using the standard data flow format described in [ASU87]

Chapter 6. Synchronization elimination in the deposit message passing model112

Stmt Gen set Kill set
0 fg fg
1 f < +shift ; A >< �shift ; A >< +shift ; B >< �shift ; B >g f < �; A > g

2 f < +shift ; A >< �shift ; A >< +shift ; B >< �shift ; B >g f < �; B > g

Table 6.1:genandkill sets for the SOR example.

6.4 Examples

This section describes how the synchronization elimination algorithm can be applied to two
applications to show the benefits and the drawbacks of this approach.

6.4.1 SOR

First we describe the computation of thein andout sets for the SOR example of Figure 4.1
The communication maps in this example are:+shift(p) = p+ 1,�shift(p) = p� 1, and the
all-to-all map�(p) = fqj0� q < Pg. Table 6.1 shows thegenandkill sets computed for each
statement.

The universal set for this example isf< �; A >< �; B > g. For a processorQ that uses a
bufferb in a statement, the kill set includes all maps withQ in the map’s domain. For simplicity,
we make the conservative assumption thatQ is in the range of all maps, so all kill sets used by
the compiler are of the form< �; b >.

Initially, all in andoutsets are the universal set. The fixed point in this example is reached
after two iterations. Table 6.2 shows thein andout sets for the first two iterations. Once the
fixed point has been reached, thein sets of each statement contain information that approximates
theBufferReadypredicate. For example, thein set of statement 1 shows that it is safe to deposit
data into arrayA on the right and left neighboring nodes without additional synchronization.
Similarly, thein set of statement 2 shows that it is safe to deposit data into arrayB on the right
and left neighboring nodes. Therefore, the data flow algorithm shows that SOR can piggy-back
all sequencing information on previous communication exchanges.

6.4.2 Two dimensional FFT

Programs that have repeating, regular communication patterns are obvious candidates for explicit
synchronization elimination. The two dimensional fast Fourier transform (2D FFT) code shown
in Figure 6.4 is one such program. The arrayA is distributed by columns. The nodes compute
FFTs over the columns, transposeA into B, compute FFTs over the columns ofB, and transpose
B back toA. The transpose operations require all-to-all communication steps.

One might assume that the all-to-all communication guarantees that all nodes have passed
the previous communication step by the time any node reaches the next communication step,
but a node may be delayed at the previous communication step after it has exchanged data
with some of the other nodes. Figure 6.5 shows an example situation of a delayed node. In
this example, node 3 is delayed after sending data to node 1. Node 1 receives both messages,

6.4 Examples 113

After iteration 1
Stmt in out

0 f < �; A >< �; B > g f < �; A >< �; B > g
1 f < �; A >< �; B > g f < �; B > g

2 f < �; B > g f < +shift ; A >< �shift ; A >g

After iteration 2
Stmt in out

0 f < �; A >< �; B > g f < �; A >< �; B > g

1 f < +shift ; A >< �shift ; A >g f < +shift ; B >< �shift ; B > g

2 f < +shift ; B >< �shift ; B >g f < +shift ; A >< �shift ; A >g

Table 6.2: in and out sets for the first two iterations of the data flow algo-
rithm. Boxed entries show the approximation of theBufferReadyset for the
communicating statements.

do i=1,iter cnt
0. input(A)
1. fft(A)
2. transpose(A,B)
3. fft(B)
4. transpose(B,A)
5. output(A)
enddo

Figure 6.4: Code for two dimensional fast Fourier transform (2D FFT).

Chapter 6. Synchronization elimination in the deposit message passing model114

Transpose(A,B) Transpose(A,B) Transpose(A,B)

Transpose(B,A)

FFT(B)

Node 1 Node 2 Node 3

Figure 6.5: Three nodes computing a 2D FFT. Node 3 is delayed before it
finished sending to node 2 as shown by the dashed arrow.

Stmt Gen set Kill set
0 fg f < �; A > g
1 fg f < �; A > g

2 f < �; A >< �; B > g f < �; A > g
3 fg f < �; B > g

4 f < �; A >< �; B > g f < �; B > g
5 fg f < �; A > g

Table 6.3:genandkill sets for the 2D FFT example.

computes the FFTs and continues onto the next communication step. Node 2 deposits both
of its messages but is stalled waiting for the message from node 3. It is not safe for node 1
to deposit data intoA until node 3 finishes sending data fromA. Since both arrays are used in
every communication step and a node may either be in communication stepl or l+1, additional
synchronization is necessary to ensure that all nodes are in the same communication step.

Table 6.3 shows thegenandkill sets for the 2D FFT program. The data flow algorithm takes
two iterations to reach a fixed point, and Table 6.4 shows thein andout sets for the first two
iterations. Thein sets for the transpose statements are empty, so the all-to-all communication
for the transpose statements requires an additional synchronization step.

However, when calculating two 2D FFTs in each iteration, no additional synchronization is
needed. Figure 6.6 shows such an example. Alternating transpose operations work on disjoint
sets of buffers, so the target buffer of the current all-to-all communication was not used in the
previous all-to-all communication.

6.5 Improving the approximation

The data flow algorithm described in Section 6.3 does not take into account which subsections
of the arrays are read or written during a communication step. By increasing theaccuracy of the

6.5 Improving the approximation 115

After iteration 1
Stmt in out

0 f < �; A >< �; B > g f < �; B > g

1 f < �; B > g f < �; B > g
2 f < �; B > g f < �; B > g

3 f < �; B > g f g
4 f g f < �; A > g

5 f < �; A > g fg

After iteration 2
Stmt in out

0 f g f g
1 f g f g

2 f g f < �; B > g

3 f < �; B > g f g

4 f g f < �; A > g

5 f < �; A > g fg

Table 6.4:in andoutsets for the first two iterations of the data flow algorithm
over the 2D FFT.

do i=1,iter cnt
input(A)
fft(A)
transpose(A,B)

input(C)
fft(C)
transpose(C,D)

fft(B)
transpose(B,A)
output(A)

fft(D)
transpose(D,C)
output(C)

enddo

Figure 6.6: Code that computes two 2D FFTs in each iteration. This program
does not require additional synchronization.

Chapter 6. Synchronization elimination in the deposit message passing model116

Pi Pj
A

B

Bi

Aj

Figure 6.7: The array subsection division during a transpose fromA to B in 2D FFT.

analysis to keep track of array subregions, the need for synchronization can be reduced further.
By analyzing array subsections, the compiler can determine that additional synchronizations

are not really needed in the original 2D FFT code shown in Figure 6.4. During the transpose in
statement 2, nodeQ sends data from a subsection ofA (Ax) to nodeP only, andAx is not used
by Q in statement 3. In statement 4, nodeP needs to deposit data intoAx on nodeQ. Since
nodeP received a message fromQ’s last use ofAx, P knows that the old values ofAx are no
longer in use even if nodeQ has not finished statement 2.

During a transpose operation fromA to B overN processors, the compiler can logically
divide the arrays intoN disjoint subsections such that nodePi deposits its local sectionAj into
sectionBi on nodePj as shown in Figure 6.7. Figure 6.8 shows another timeline of the delayed
node in the all-to-all communication of Figure 6.5, but in this timeline, each arrow is labeled
with the local array subsection that is sent or overwritten. With this labeling, it is clear that
node 1 can continue and send its messages since the data in array subsectionsA1 on nodes 2
and 3 has already been sent.

Using this array subsection division, thekill set defined in Equation 6.3 can be augmented
as follow.

kill(l) = f< P;Q; b > jUsedl(Q; b)� SoleReceiverl(P;Q; b)g

The triple< P;Q; b > is in SoleReceiverl if nodeP is the only recipient of data from bufferb
on nodeQ. If b is used byQ for communication, and nodeP is the only recipient of that data,
then even if nodeQ has not completed statementl before nodeP starts the next communication
statement, nodeP knows thatQ is finished with the data inb.

Table 6.5 shows the augmentedgenandkill sets for each statement of the original 2D FFT
program. The data flow algorithm reaches a fixed point in two iterations. Thein andoutsets for
these iterations are shown in Table 6.6. Thein sets that approximate theBufferReadyset for the
communicating statements are boxed. For statement 2, thein set shows thatPi can deposit data
into array subsectionAj onPj without additional synchronization. This is the communication
required by the transpose operation, so no additional synchronization is required.

The 2D FFT example shows that the compiler can improve its data flow approximation by
analyzing how array subsections are read and written. In some cases the compiler does not
have the information to perform this analysis, and in other cases the benefits of the improved
approximation may not be worth the cost of the additional analysis.

6.5 Improving the approximation 117

Transpose(A,B) Transpose(A,B) Transpose(A,B)

Node 1 Node 2 Node 3

A3
B1

A2 B1

B2

B3

B2
A1

A2
FFT(B)

Transpose(B,A)

B2

B3

A1
A1

A1
A3

Figure 6.8: Three nodes computing a 2D FFT. Node 3 is delayed before it
finished sending to node2 as shown by the dashed arrow. Arrows are labeled
with local array subsection that is sent or received.

Stmt Gen set Kill set
0 fg f<*,*,A> g
1 fg f<*,*,A> g
2 f < �; �; A >< �; �; B > g f < Pi; Pj ; Ak > jj 6= k ga

3 fg f < �; �; B > g
4 f < �; �; A >< �; �; B > g f < Pi; Pj; Bk > jj 6= k g

5 fg f < �; �; A > g

af< Pi; Pj;Ak > g - f < Pi; Pj;Aj > g

Table 6.5: Augmentedgenandkill sets for the 2D FFT example.

Chapter 6. Synchronization elimination in the deposit message passing model118

After iteration 1
Stmt in out

0 f < �; �; A >< �; �; B > g f < �; �; B > g
1 f < �; �; B > g f < �; �; B > g
2 f < �; �; B > g f < �; �; B > g [f < Pi; Pj ; Ak > jj = k g ga

3 f < �; �; B > g [f < Pi; Pj ; Ak > jj = k g g f < Pi; Pj ; Ak > jj = k g
4 f < Pi; Pj ; Ak > jj = k g f < �; �; A > g [f < Pi; Pj ; Bk > jj = k g

5 f < �; �; A > g [f < Pi; Pj ; Bk > jj = k g f < Pi; Pj; Bk > jj = k g

af < �; �;B > g [(f< �; �;A >g - f < Pi; Pj;Akjj 6= kgg)

After iteration 2
Stmt in out

0 f < Pi; Pj; Bk > jj = k g f < Pi; Pj ; Bk > jj = k g
1 f < Pi; Pj; Bk > jj = k g f < Pi; Pj ; Bk > jj = k g

2 f < Pi; Pj; Bk > jj = k g f < Pi; Pj ; Ak > jj = k g

3 f < Pi; Pj; Ak > jj = k g f < Pi; Pj ; Ak > jj = k g

4 f < Pi; Pj; Ak > jj = k g f < Pi; Pj ; Bk > jj = k g

5 f < Pi; Pj; Bk > jj = k g f < Pi; Pj ; Bk > jj = k g

Table 6.6:in andoutsets for the first two iterations of the data flow algorithm
over the 2D FFT program using array subsections. Boxed entries approximate
theBufferReadyset for the communicating statements.

6.6 Effects of synchronization elimination 119

6.6 Effects of synchronization elimination

Data flow synchronization elimination has been implemented in the communication optimiza-
tion phase of the Fx compiler. This implementation recognizes redundant synchronization
in many programs that include repeating communication patterns such as the SOR and the
pipelined 2D FFT programs described in Section 6.3. For simplicity of implementation, the
prototype compiler does not analyze array subsections as described in Section 6.5.

While the algorithm can recognize redundant synchronization, it may not always make
sense to eliminate the synchronization step. For machines like the Cray T3D with dedicated
synchronization hardware, a subset synchronization takes a matter of 5 to 10 cycles, far less
than a complete communication step. Even the synchronization implementation on iWarp is
very fast compared to a complete communication step. Removing synchronization on these
machines will not result in very significant changes in execution time unless the program is
inherently asynchronous.

However, for machines like Paragon, synchronization elimination shows more potential for
performance improvement. Paragon has no dedicated hardware for synchronization. Instead,
it sends control messages over the data network to implement barrier synchronization, so the
synchronization overhead can be relatively expensive compared to the communicationstep time.
We measured the effects of barrier synchronization for two dimensional SOR and 2D FFT on
64 nodes of a Paragon system running the OSF operating system.

Figure 6.9(a) shows the average communication time for one iteration of the SOR pro-
gram. The line labeledWith barrier shows the communication time including the barrier
synchronization. The line labeledWithout barrier shows the communication time without the
barrier synchronization. The line labeled64 node barrier shows the time to execute a barrier
synchronization over 64 nodes.

The difference in communication times remains relatively constant for small input sizes,
and this difference corresponds to the barrier synchronization time. The different grows as
the problem size increases, perhaps due to asynchronous behavior between the SOR steps.
Table 6.7(a) shows the difference in total execution time due to the barrier synchronization
elimination. The performance difference for small problems sizes is quite noticeable. As the
problem size increases, the relative amount of communication decreases, so the relative benefit
in total execution time decreases as the problem size grows.

2D FFT requires an all-to-all communication pattern, where every node sends a unique
message to every other node. This is a dense communication pattern, prone to network con-
gestion. By contrast, SOR requires only nearest neighbor communication, so it is not likely to
encounter congestion delays. Unlike the SOR example, the performance effects of eliminating
synchronization for the 2D FFT are not as clear.

Figure 6.9(b) shows the average communication time for one iteration of the pipelined 2D
FFT program. Again, the line labeledWith barrer shows the time for the implementation that
does not eliminate the synchronization, and the line labeledWithout barrer shows the time for
the implementation that eliminates the synchronization. The total amount of communication
time is quite large compared to the synchronization time (shown by the line labeled64 node
barrier barely visible above the x axis). Merely eliminating the overhead of performing a
synchronization should not greatly affect the communication time.

Chapter 6. Synchronization elimination in the deposit message passing model120

SOR

■ ■ ■
■

■

■

■

● ● ●
●

●

●

●

▲ ▲ ▲ ▲ ▲ ▲ ▲0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

100 1000 10000

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
ds

)

N

■ With barrier

● Without barrier

▲ 64 node barrier

(a)

2D FFT

■ ■
■

■

■

● ●
●

●

●

▲ ▲ ▲ ▲ ▲0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

256 1000 4096

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
ds

)

N

■ With barrier

● Without barrier

▲ 64 node barrier

(b)

Figure 6.9: Average communication time for one iteration on a 64 node Paragon
system for SOR (a) and 2D FFT (b).

6.7 Discussion 121

Problem size Speed up
128 50 %
256 36 %
512 18 %
1024 10 %
2048 1.3 %
4096 1.7 %
8192 1.4 %

Problem size Speed up
256 6.5 %
512 7.5 %
1024 -2.1 %
2048 -2.6 %
4096 -1.9 %

(a) (b)

Table 6.7: Tables of the percentage of total program execution speed up due to
synchronization elimination for two applications: SOR (a) and 2D FFT (b).

For small problem sizes, eliminating the synchronization slightly improves communication
performance. However, for problem sizes greater than 512� 512, removing synchronization
actually makes the communication performance worse. Table 6.7(b) shows the effect of barrier
elimination on total execution time.

For all-to-all communication, synchronization actually performs two functions. In addition
to ensuring that no data is deposited before its time, the synchronization acts as a congestion
control mechanism, limiting the set of messages that can be in the network at one time. Without
synchronization, one node can be lucky and insert many messages for stepi while delaying
nodes trying to insert messages for stepi� 1. Eventually, all nodes must wait for the delayed
nodes. By allowing some nodes to go to the next step total execution time can increase.

Similar performance improvements due to using synchronization for congestion control have
been shown in [HKO+94] for all-to-all communication on iWarp and T3D and for communica-
tion on the CM-5[BK94]. In [SS94], Stamatopolusand Solworth propose a network architecture
that incorporates barrier synchronization for congestion control into regular message passing
communication. Their simulations show how varying the frequency of synchronization affects
the bandwidth available for the application.

6.7 Discussion

The previous section evaluates the effect of barrier elimination on two simple programs to deter-
mine the effect of barrier elimination on extremes in communication patterns. These measure-
ments indicate that on the Paragon barrier elimination is beneficial for “sparse” communication
patterns, but for “dense” communication patterns the benefits of eliminating synchronization
are over shadowed by the costs of losing the synchronization for network congestion.

For other systems without hardware support for barrier synchronization, the tradeoffs may
be different. For example, workstation clusters connected by high-speed networks (e.g. ATM
switches or FDDI rings) are not likely to have hardware barrier synchronization support, but
such systems may still benefit from using the deposit model to avoid buffering. It is not
clear how synchronization affects network congestion in systems arranged in non-mesh or

Chapter 6. Synchronization elimination in the deposit message passing model122

irregular topologies. Current measurements that show the impact of synchronization on network
congestion are concentrated on mesh-connected systems (iWarp, Paragon, T3D) or at least
systems with regular topologies (CM-5).

Some of the benefits of the deposit model can be achieved by using the standard message
passing interface. By posting receives “far enough” in advance, the programmer can guarantee
that the receiver is always ready to consume the incoming message directly. In fact, the Paragon
User’s Guide suggests posting a receive and then exchanging control messages to ensure the
data will not be buffered[Int94]. By using the the standard message passing interface in this
manner, the synchronization elimination analysis can also be used to show where receives can
be posted to guarantee that buffering will be unnecessary.

The code segments in Figure 6.10 shows variations in communication code for the SOR
data parallel example in Chapter 4. Figure 6.10(a) and (b) show communication codes using the
deposit and standard message passing interfaces that rely on barrier synchronization to ensure
that messages will never be buffered. After running the barrier elimination algorithm described
in Section 6.3, the code that uses the deposit model interface can merely eliminate the barrier
synchronization (as shown in Figure 6.10(c)). To eliminate synchronization from the code that
uses the standard interface requires a bit more work. The programmer must move the receive
call before the send that implicitly carries the control information. In essence, the receive
requests must bepipe-lined(as shown in Figure 6.10(d)).

6.8 Chapter summary

This chapter describes how the compiler can recognize when additional synchronization is
unnecessary in the deposit message passing model. For many programs with repeating com-
munication patterns, the communication is self-synchronizing and additional synchronization
is not needed for correctness.

However, our observations of barrier elimination on Paragon show that the performance
effects of barrier synchronization are not straightforward. Eliminating barriers will not be
beneficial unless at least one of the following conditions hold.

� The communication pattern is not prone to congestion on the target network.

� The barrier synchronization overhead is relatively large compared to the total communi-
cation time.

� The application code can benefit from asynchronous execution.

Therefore, synchronization elimination should not be applied blindly. To avoid detrimental
side effects, the compiler writer must understand the secondary effects of synchronization on
network congestion in the target system.

6.8 Chapter summary 123

do i=1,iter cnt
barrier sync()
deposit(A,p-1); deposit(A,p+1)
wait(nummsgs)
B(lb:ub) = c1*A(lb-1:ub-1) +

c2*A(lb+1:ub+1)
barrier sync()
deposit(B,p-1); deposit(B,p+1)
wait(nummsgs)
A(lb:ub) = c1*B(lb-1:ub-1) +

c2*B(lb+1:ub+1)
enddo

do i=1,iter cnt
receive(A,&a1status); receive(A,&a2status)
barrier sync()
send(A,p-1); send(A,p+1)
wait(a1status); wait(a2status)
B(lb:ub) = c1*A(lb-1:ub-1) +

c2*A(lb+1:ub+1)
receive(B,&b1status); receive(B,&b2status)
barrier sync()
send(B,p-1); send(B,p+1)
wait(b1status); wait(b2status)
A(lb:ub) = c1*B(lb-1:ub-1) +

c2*B(lb+1:ub+1)
enddo

(a) (b)

do i=1,iter cnt
deposit(A,p-1); deposit(A,p+1)
wait(nummsgs)
B(lb:ub) = c1*A(lb-1:ub-1) +

c2*A(lb+1:ub+1)
deposit(B,p-1); deposit(B,p+1)
wait(nummsgs)
A(lb:ub) = c1*B(lb-1:ub-1) +

c2*B(lb+1:ub+1)
enddo

receive(A,&a1status); receive(A,&a2status)
do i=1,iter cnt

receive(B,&b1status); receive(B,&b2status)
send(A,p-1); send(A,p+1)
wait(a1status); wait(a2status)
B(lb:ub) = c1*A(lb-1:ub-1) +

c2*A(lb+1:ub+1)
receive(A,&a1status); receive(A,&a2status)
send(B,p-1); send(B,p+1)
wait(b1status); wait(b2status)
A(lb:ub) = c1*B(lb-1:ub-1) +

c2*B(lb+1:ub+1)
enddo

(c) (d)

Figure 6.10: SOR pseudo-code for nodep. The communication code shows
differences between using the deposit model(a) and the standard message pass-
ing interface(b) to avoid buffering. (c) and (d) show how the two interfaces can
use information from the synchronization elimination algorithm to avoid using
additional control messages.

Chapter 6. Synchronization elimination in the deposit message passing model124

Chapter 7

Conclusions

For most distributed applications, the relative cost of communication diminishes as the size of the
problem increases (relative to the machine’s size). When the amount of work per node is large
enough, the communication overhead is unimportant, and communication optimizations are
not vital. However, optimizing communication performance increases the amount of effective
parallelism, making it practical to distribute the arrays into smaller blocks over more processors.
Therefore, reducing communication overhead is essential for massively parallel systems.

To reduce the overheads of communication, it is necessary to use a communication model
that is appropriate for the target machine. Our measurements on iWarp and Paragon show that the
best communication model depends on the communication pattern and the target architecture.
The static connection-based model is superior on iWarp, because software can directly manage
the hardware communication resources, but the static reservation of software communication
resources is also beneficial on Paragon for sparse communication patterns.

Therefore, the best implementation of a parallel application depends on the communication
patterns required and the target architecture. With communication pattern analysis and infor-
mation about the target architecture, the data parallel compiler is better suited to performing
architecture-dependent optimizations than the human programmer.

I verified that a compiler can use information about architecture to improve communication
performance by building a prototype communication generation and optimization phase in the
Fx compiler. My application measurements on iWarp and Paragon show that using knowledge
about the target architecture makes a significant performance difference; these differences can
affect total execution time by up to 30%.

The techniques described in this thesis are not tightly bound to HPF. Some of the techniques
are useful outside the domain of parallel compilers; they can be useful for runtime libraries
or even dedicated human programmers. For example, a runtime library can perform some of
the communication model tradeoffs described in Chapter 4 particularly for systems like the
Paragon that do not have strongly limited communication resources. A tool might also be able
to perform the synchronization elimination analysis by examining message passing code with
calls to a collective communication library.

125

Chapter 7. Conclusions 126

However, all of these communication optimization techniques rely on knowing the global
communication patterns. The data parallel programming model provides a global view of the
program that greatly simplifies the identification of the communication patterns. In general,
looking a parallel program at a higher level of abstraction simplifies many of these global
communication optimizations and assignments.

7.1 Future work

The thesis makes several limiting assumptions in Chapter 2.

� Programs use the data parallel compiler model.

� All communication patterns are regular.

� The target system is dedicated to a single application.

In addition, my measurements have concentrated on programs in the scientific domain that run
on explicit message passing machines. Loosening any one of these restrictions reveals a large
area of additional work.

Alternative compilation models Combining task and data parallelism has generated a lot
of interest recently[SSOG93, Fos94]. Depending on the compilation model, it may also be
practical to derive the inter-task communication patterns and optimize these patterns for the
target architecture. Some preliminary measurements with Fx on iWarp show that varying the
inter-task communication strategy for different problem sizes can be beneficial[GHS94].

However, scheduling resource usage for communication patterns in both the task and the
data parallel models can be difficult, since communication traffic in the data parallel model
may interfere with traffic from the task parallelism model, and visa versa. The performance
estimates used by the communicationcode selection algorithmmay depend on what task parallel
communication is also occurring. Similarly, the resource management algorithmsmustbe aware
of both the data parallel communication and the task parallel communication.

Irregular communication patterns Many important problems require communication pat-
terns that cannot be analyzed at compile time. However, some knowledge about the commu-
nication pattern is frequently known at compile-time, such as the maximum number of nodes
each node communicates with (i.e. the density of communication). By using compile-time
knowledge of the target system and partial knowledge about the communication pattern, the
compiler can make some decisions about the appropriate communication model. For example
on the Paragon system, knowing whether a communication pattern is sparse or dense is enough
information to select between the static and dynamic resource reservation models.

In many programs, the runtime communication pattern changes infrequently. A architecture-
specific communication selection algorithm could be executed at runtime by using a strategy
similar to the Chaos runtime library[SAS92]. This library performs aninspectorphase that cal-
culates the runtime schedule once for many executions of the communication pattern. Similarly,
a communication selection algorithm could gather global information about the communication
pattern and make a code selection once for many iterations.

7.1 Future work 127

Operating system interactions If the parallel system is shared between multiple applications
either by space-sharing or time-sharing nodes, a dedicated runtime system is not sufficient and a
true operating system is required. The operating system must manage shared system resources
to ensure the applications execute safely and fairly. In a multi-user system, the network is a
shared resource. Therefore, the system cannot directly allow the user program to schedule the
shared communication resources.

Much of these operating system services are in place to prevent errant or malicious programs
from hurting the rest of the system. Once the compiler is debugged, compiler-generated parallel
programs should not need all of these safeguards. The compiler should be able to guarantee
that the code it generates follows the sharing policies required by the operating system.

Future distributed-memory machines My research has concentrated on distributed-memory
machines. A number of distributed shared memory machines have recently been proposed (e.g.
Flash[K+94], Shrimp[B+94b]). These architectures follow from several architectural decisions
that are different from distributed-memory machines. In particular, these machines move data
at a finer granularity.

Current distributed shared-memory machines such as Dash and KSR[Ken92] have fixed
caching and data movement strategies. These fixed strategies are analogous to Paragon’s fixed
routing strategies. The compiler can use similar software-based protocols on these machines to
work around the particular hard-wired data movement strategies.

Newer distributed shared-memory designs such as Flash enable the software to change the
caching protocol on a page by page basis. This flexibility is analogous to the flexibility of
machines like iWarp and ATM networks that reveal their resource managements strategies to
software control. With this programmability, the compiler can suggest more suitable commu-
nication protocols for different patterns.

Section 5.1.5 describes how aspects of the programmable protocols can be viewed as
communication resources. Depending of the number of protocols that can be simultaneously
in use and the cost of changing protocols, the resource managements algorithms described in
Chapter 5 may also be useful for managing these flexible distributed shared memory machines.

The developing electro-optical networks also show some performance characteristics that
can benefit from static resource reservation. In these networks, each node has a number of
mirrors that can be used to send data optically to a number of different destinations[Exm95].
Each mirror is directed by electronics, and the cost of redirecting a mirror is relatively high. In
this case the mirror is the communication resource, and the directed optical beam corresponds
to a connection.

Other program domains Most research in parallelizing compilers and communication opti-
mizations has concentrated on scientific programs. While this is an important problem domain,
there are many other problem domains that could benefit from parallel computation such as
database, multi-media, and signal processing domains.

If problems in these domains have repeating communication patterns than can be analyzed
or traced, similar architecture-dependent optimizations can also be beneficial for them. For
example, many database applications have repeating data access patterns. On distributed
databases, these data access patterns translate to communication patterns.

Chapter 7. Conclusions 128

Consider company X that performs the same set of database queries every hour on a dis-
tributed database of potentially changing data. By tracing previous accesses, the system knows
that processor A will broadcast a series of messages during the query, and the remaining pro-
cessors will redistribute data from several tables to form the join of several tables. With this
communication pattern information and knowledge about the communication architecture, the
system can select the most appropriate models to perform this communication. If the intercon-
nection network exposes limited communication resources (e.g. ATM switches), the system can
also use the communication pattern information to intelligently schedule the communication
resources.

7.2 Closing statement

This thesis argues that it is possible and beneficial for a parallelizing compiler to use architecture-
specific information when generating communication code. In this dissertation, I have supported
this argument by the following:

� Describing the impact of static and dynamic communication resource reservation on
communication performance and communication models.

� Describing a compiler framework that can use architecture-specific communication in-
formation for communication code selection.

� Presenting algorithms that enable the compiler to target and optimize communication
for static and dynamic communication resource reservation: resource management code
selection for the static resource reservation model and synchronization elimination for
the dynamic resource reservation model.

� Presenting program measurements to show the benefits of these optimizations on iWarp
and Paragon parallel systems.

If code generated by parallel compilers is to reach the efficiency of “hand-parallelized” code,
compilers must generate communication code beyond the standard message passing interface.
Just as P-code is not sufficient for uniprocessor optimizations, the compiler must understand
the target communication architecture to generate efficient communication code. Either the
compiler must export application communication pattern knowledge to lower communication
levels, or the compiler must import specific information about the target architecture and
environment.

With the current development of radically different distributed-memory machines from
ATM workstation clusters to distributed shared-memory systems, it does not appear that a
canonical communication architecture will appear in the near future. Therefore, it will continue
to be important for parallelizing compilers to generate communication code tailored for the
target machine.

Bibliography

[A+88] F. Allen et al. An Overview of the PTRAN Analysis System for Multiprocessing.
Journal of Parallel and Distributed Computing, 5(5):617–640, October 1988.

[AKLS88] E. Albert, K. Knobe, J. Lukas, and G. Steele, Jr. Compiling Fortran 8x ar-
ray features for the Connection Machine computer system. InProceedings of
ACM/SIGPLAN PPEALS 1988, pages 42–56, New Haven, CT, September 1988.
ACM.

[AL93] S. Amarasinghe and M. Lam. Communication Optimization and Code Genera-
tion for Distributed Memory Machines. InProgramming Language Design and
Implementation, pages 126–138, Albuquerque, NM, June 1993. ACM.

[ASU87] A. Aho, R. Sethi, and J. Ullman.Compilers: Principles, Techniques, and
Tools, chapter 10.5 Introduction to Global Data-Flow Analysis, pages 608–623.
Addison-Wesley, 1987.

[B+88] S. Borkar et al. iWarp: An Integrated Solution to High-Speed Parallel Computing.
In Proceedings of the Supercomputing Conference, pages 330–339, 1988.

[B+90] S. Borkar et al. Supporting Systolic and Memory Communication in iWarp. In
Proc. 17th Intl. Symposium on Computer Architecture, pages 70–81. ACM, May
1990. A revised version has appeared as technical report CMU-CS-90-197.

[B+94a] M. Barnett et al. Building a High-Performance Collective Communication Li-
brary. InProceedings of Supercomputing ’94, pages 107–116, Washington, D.C.,
November 1994.

[B+94b] M. Blumrich et al. Virtual Memory Mapped Network Interface for the SHRIMP
Multicomputer. InProceedings of the 21st Annual International Symposium on
Computer Architecture, pages 142–153, Chicago, IL, April 1994.

[BCS93] E. Biagioni, E. Cooper, and R. Sansom. Designing a Practical ATM LAN.IEEE
Network, 7(2):32–9, March 1993.

[BHMS91] M. Bromley, S. Heller, T. McNerney, and G. L. Steele, Jr. Fortran at ten gigaflops:
The connection machine convolution compiler. InProceedings of SIGPLAN ’91
Conference on Programming Language Design and Implementation, Toronto,
Ont., June 1991.

129

Bibliography 130

[BHS+94] G. Blelloch, J. Hardwick, J. Sipelstein, M. Zagha, and S. Chatterjee. Imple-
mentation of a portable nested data-parallel language.Journal of Parallel and
Distributed Computing, 21(1):4–14, April 1994.

[BK94] E. Brewer and B. Kuszmaul. How to Get Good Performance from the CM-5
Data Network. InInternational Parallel Processing Symposium, pages 858–867,
Cancun, Mexico, April 1994.

[BW93] A. J. C. Bik and A. G. Wijshoff. Compilation techniques for sparse matrix
computation. InProceedings of ICS ’93, pages 416–424, Tokyo, Japan, July
1993.

[C+87] A. Carle et al. A Practical Environment for Scientific Programming.Computer,
20(11):75–89, November 1987.

[C+92] A. Choudhary et al. Compiling Fortran 77D and 90D for MIMD Distributed-
Memory Machines. InFourth Symposium on the Frontiers of Massively Parallel
Computation, McLean, VA, October 1992.

[CFR+88] R. Cytron, R. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. An Efficient Method
of Computing Static Single Assignment Form. InProceedings of Principles of
Programming Languages, 1988.

[CGS93] S. Chatterjee, J. Gilbert, and R. Schreiber. Mobile and Replicated Alignment of
Arrays in Data-Parallel Programs. InSupercomputing ’93, pages 420–429, 1993.

[CGST93] S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng. Automatic Array
Alignment in Data-Parallel Programs. InProceedings of the Twentieth Annual
ACM SIGACT/SIGPLAN Symposium on Principles of Programming Languages,
Charleston, SC, January 1993.

[CKP+92] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicken.LogP: towards a realistic model of parallel computation.
Technical Report UCBC 92-713, Univ. of California, Berkeley, 1992. expanded
version of paper in 4th Symp. on PPoPP.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms,
chapter 16. Dynamic Programming, pages 301–328. The MIT Electrical and
Computer Science Series. The MIT Press, Cambridge, MA, 1990.

[CMZ92] B. Chapman, P. Mehrotra, and H. Zima. Programming in Viena Fortran.Scientific
Programming, 1:31–50, fall 1992.

[CW92] L. A. Crutcher and A. G. Waters. Connection Management for an ATM Network.
IEEE Network, 6(6):42–55, November 1992.

[Dal92] W. J. Dally. Virtual-Channel Flow control.IEEE Transactions on Parallel and
Distributed Systems, 3(2):194–205, March 1992.

Bibliography 131

[Div91] Intel Supercomputer Systems Division.Paragon XP/S Product Overview, 1991.

[DP93] P. Druschel and L. L. Peterson. FBufs: A High-Bandwidth Cross-Domain Transfer
Facility. InProceedings of the Fourteenth ACM Symposium on Operating System
Principles, pages 189–202, Asheville, NC, December 1993.

[DZO92] H. G. Dietz, A. Zaafrani, and M. T. O’Keefe. Static Scheduling for Barrier MIMD
Architectures.The Journal of Supercomputing, 5:263–289, 1992.

[Exm95] I. Exman. Optical Implementation of Collective Communications. Talk at
Carnegie Mellon University., March, 10 1995.

[Fel93] E. W. Felten. Protocol Compilation: High-Performance Communication for
Parallel Programs. Ph.D. thesis, University of Washington, 1993.

[FHK+90] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and
M. Wu. Fortran D Language Specification. Technical Report TR90-141, Rice
University, December 1990.

[For93] High Performance Fortran Forum.High Performance Fortran Language Specifi-
cation Version 1.0., May 1993.

[Fos94] I. Foster. Task parallelism and high performance languages.IEEE Parallel and
Distributed Technology, 2(3):27–36, Fall 1994.

[FSW93] A. Feldmann, T. M. Stricker, and T. E. Warfel. Supporting sets of arbitrary connec-
tions on iWarp through communication context switches. InACM Symposium on
Parallel Algorithms and Architectures, pages 203–212, Schloss Velen, Westfalia,
Germany, July 1993.

[FW78] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. InProceedings
of the 10th Annual Symposium on Theory of Computing, pages 114–118, 1978.

[GB92a] M. Gupta and P. Banerjee. A Methodology for High-Level Synthesis of Com-
munication on Multicomputers. InInternational Conference on Supercomputing,
pages 357–367, 1992.

[GB92b] M. Gupta and P. Banerjee. Demonstration of Automatic Data Partitioning Tech-
niques for Parallelizing Compilers on Multicomputers.IEEE Transactions on
Parallel and Distributed Systems, 3(2):179–193, 1992.

[Ger90] M. Gerndt. Updating distributed variables in local computations.Concurrency:
Practice and Experience, 2(3):171–93, September 1990.

[GHS94] T. Gross, S. Hinrichs, and J. Subhlok. Construction and Delivery of Messages
for Modular Parallel Programs. InTransputer Research and Applications 7,
H. Arabina, editor, Transputer and Occam* Engineering Series, pages 176–185,
Amsterdam, October 1994. IOS Press.

Bibliography 132

[GLS93] S. L. Graham, S. Lucco, and O. Sharp. Orchestrating Interactions Among Parallel
Computations. InACM SIGPLAN ’93 Conference on Programming Language
Design and Implementation, pages 100–111, Albuquerque, NM, June 1993.

[GPBS94] L. Gravano, G. D. Pifarre, P. E. Berman, and J. L. C. Sanz. Adaptive Deadlock-
and Livelock-Free Routing with All Minimal Paths in Torus Network.IEEE
Transactions on Parallel and Distributed Systems, 5(12):1233–1251, December
1994.

[Gre93] D. Greenburg. Efficient Wiring of Reconfigurable Parallel Processors. InACM
Symposium on Parallel Algorithms and Architectures, pages 318–324, Schloss
Velen, Westfalia, Germany, July 1993.

[GS91] J. Gilbert and R. Schreiber. Optimal Expression Evaluation for Data Parallel
Architectures.Journal of Parallel and Distributed Computing, 13:58–64, 1991.

[Gup92] M. Gupta.Automatic Data Partitioning on Distributed Memory Multicomputers.
Ph.D. thesis, University of Illinois at Urbana-Champaign, 1992.

[HGDG94] J. Heinlein, K. Gharachorloo, S. Dresser, and A. Gupta. Integration of Message
Passing and Shared Memory in the Stanford FLASH Multiprocessor. InSixth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 38–50, San Jose, October 1994.

[HHKT92] M. Hall, S. Hiranandani, K. Kennedy, and C.-W. Tseng. Interprocedural Compi-
lation of Fortran D for MIMD Distributed Memory Machines. InSupercomputing
’92, Minneapolis, MN, November 1992.

[Hin95] S. Hinrichs. Simplifying Connection-Based Communication.IEEE Parallel and
Distributed Technology, 3(1):25–36, Spring 1995.

[HJ92] D. Henry and C. Jeorg. A Tightly-Coupled Processor-Network Interface. InFifth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 111–122, Boston, MA, October 1992.

[HKO+94] S. Hinrichs, C. Kosak, D. O’Hallaron, T. Stricker, and R. Take.An Architecture
for Optimal All-to-All Personalized Communication. Technical Report CMU-CS-
94-140, Carnegie Mellon, 1994. Extended version of paper presented at SPAA
’94.

[HQL+91] P. Hatcher, M. Quinn, A. Lapadula, B. Seevers, R. Anderson, and R. Jones. Data-
parallel programming on MIMD computers.IEEE Transactions on Parallel and
Distributed Systems, 2(3):377–383, July 1991.

[Int94] Intel Corporation.Paragon User’s Guide, 1994.

[Isl94] N. Islam. Customized Message Passing and Scheduling for Parallel and Dis-
tributed Applications. Ph.D. thesis, University of Illinois at Urbana-Champaign,
1994.

Bibliography 133

[K+93] D. Kuck et al. The Cedar System and an initial performance study. InProceed-
ings of the 20th Annual International Symposium on Computer Architecture, San
Diego, CA, May 1993.

[K+94] J. Kuskin et al. The Stanford FLASH Multiprocessor. InProceedings of the 21st
Annual International Symposium on Computer Architecture, Chicago, IL, April
1994.

[Ken92] Kendall Square Research, Waltham, MA.Kendall Square Research Technical
Summary, 1992.

[KK79] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer communica-
tion switching technique.Computer Networks, 3(4):267–286, September 1979.

[KL70] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning
Graphs.The Bell System Technical Journal, pages 291–307, February 1970.

[KLD92] K. Knobe, J. D. Lukas, and W. J. Dally. Dynamic Alignment on Distributed
Memory Systems. InThird Workshop on Compilers for Parallel Computers,
pages 394–404, Viena, Austria, July 1992.

[KLS90] K. Knobe, J. D. Lukas, and G. L. Steele, Jr. Data Optimization: Allocation of
Arrays to Reduce Communication on SIMD Machines.Journal of Parallel and
Distributed Computing, 8:102–118, 1990.

[Kon94] S. Konstantinidou. Segment router: a novel router design for parallel computers.
In ACM Symposium on Parallel Algorithms and Architecture, Cape May, NJ, June
1994. ACM.

[KS91] H. T. Kung and J. Subhlok. A new approach for automatic parallelization of
blocked linear algebra computations. InProceedings of Supercomputing ’91,
pages 122–129, Albuquerque, NM, November 1991.

[L+92] D. Lenoski et al. The Stanford DASH multiprocessor.Computer, 25(3):63–79,
March 1992.

[L+93] C. E. Leiserson et al. The Network Architecture of the Connection Machine CM-
5. In ACM Symposium on Parallel Algorithms and Architectures, pages 272–85,
1993.

[LC90] J. Li and M. Chen. Index Domain Alignment: Minimizing Cost of Cross-
Referencing Between Distributed Arrays. InFrontiers90: 3rd Symposium Fron-
tiers Massively Parallel Computation, pages 424–433, 1990.

[LC91a] J. Li and M. Chen. Compiling Communication-Efficient Programs for Mas-
sively Parallel Machines.IEEE Transactions on Parallel and Distributed Systems,
2(3):361–376, July 1991.

Bibliography 134

[LC91b] J. Li and M. Chen. The data alignment phase in compiling programs for
distributed-memory machines.Journal of Parallel and Distributed Computing,
13(2):213–221, October 1991.

[LG94] D. Lahaut and C. Germain. Static Communication in Parallel Scientific Programs.
In PARLE ’94: Parallel Architectures and Languages Europe, C. Halatis et al.,
editors, Lecture Notes in Computer Science, pages 262–276, Athens, Greece, July
1994. Springer-Verlag.

[Lo88] V. M. Lo. Heuristic Algorithms for Task Assignment in Distributed Systems.
IEEE Transactions on Computers, 37(11):1384–1397, November 1988.

[MB93] C. Maeda and B. Bershad. Protocol Service Decomposition for High-Performance
Networking. InProceedings of the 14th ACM Symposium on Operating Systems
Principles, pages 244–255, Asheville, NC, December 1993.

[MMRW94] A. B. Maccabe, K. S. McCurley, R. Riesen, and S. R. Wheat. SUNMOS for the
Intel Paragon: A brief user’s guide. InProceedings of the Intel Supercomputer
Users’ Group. 1994 Annual North America Users’ Conference., pages 245–251,
June 1994.

[MPI93] The Message Passing Interface Forum.Draft Document for a Standard Message
Passing Interface, November 1993.

[MPS93] W. Moore, M. Pandit, and W. Shubert.Tau Software Virtual Crossbar Facility.
Intel Supercomputer Systems Division, January 1993. Research report.

[MTW93] M.D. May, P. W. Thompson, and P. H. Welch, editors.Networks, Routers,
and Transputers: Function, Performance, and Application. IOS Press, Inc.,
Amsterdam, Netherlands, 1993.

[PR94] P. Pierce and G. Regnier. The Paragon Implementationof the NX Message Passing
Interface. InScalable High-Performance Computing Conference, pages 184–190,
Knoxville, TN, May 1994.

[PS92] L. L. Pollock and M. L. Soffa. Incremental Global Reoptimization of Programs.
ACM Transactions on Programming Languages and Systems, 14(2):173–200,
April 1992.

[Pug91] W. Pugh. The Omega Test: a fast and practical integer programming algorithm
for dependence analysis. InSupercomputing ’91, 1991.

[RG89] S. Richardson and M. Ganapathi. Interprocedural Optimization: Experimental
Results.Software - Practice and Experience, 19(2):149–169, February 1989.

[RLW94] S. Reinhardt, J. Larus, and D. Wood. Tempest and Typhoon: User-Level Shared
Memory. InProceedings of the 21st Annual International Symposium on Com-
puter Architecture, Chicago, IL, April 1994.

Bibliography 135

[RS87] J. Rose and G. Steele, Jr. C*: an extended C language for data parallel program-
ming. InProceedings of the Second InternationalConference on Supercomputing,
volume 2, St. Petersburg, FL, May 1987.

[RSW91] M. Rosing, R. B. Schnabel, and R. P. Weaver. The DINO Parallel Programming
Language.Journal of Parallel and Distributed Computing, 13:30–42, 1991.

[S+92] E. J. Schwabe et al. A separator-based framework for automated partitioning and
mapping of parallel algorithms for numerical solution of pdes. InProceedings of
the First Annual Summer Institute on Issues and Obstacles in the Practical Im-
plementation of Parallel Algorithms and the Use of Parallel Machines in Parallel
Computation (DAGS/PC ’92), pages 48–62. Dartmouth Institute for Advanced
Graduate Studies, June 1992.

[SAS92] A. Sussman, G. Agrawal, and J. Saltz. PARTI primitives for unstructured and
block structured problems.Computing Systems in Engineering, 3(4):73–86, 1992.

[Sco91] D. S. Scott. Efficient All-to-All Communication Patterns in Hypercube and Mesh
Topologies. InThe Sixth Distributed Memory Computing Conference Proceed-
ings, pages 398–403, 1991.

[SG95] T. Stricker and T. Gross. Optimizing Memory System Performance for Com-
munication in Parallel Computers. InProc. 22nd Intl. Symposium on Computer
Architecture, pages 308–319, Santa Margherita Ligure, Italy, June 1995.

[SOG94] J. Stichnoth, D. O’Hallaron, and T. Gross. Generating communication for array
statements: Design, implementation, and evaluation.Journal of Parallel and
Distributed Computing, 21(1):150–159, 1994.

[SS94] J. Stamatopoulos and J. A. Solworth. Increasing network bandwidth on meshes.
In ACM Symposium on Parallel Algorithms and Architectures, pages 336–345,
Cape May, NJ, June 1994. ACM.

[SSO+95] T. M. Stricker, J. Stichnoth, D. R. O’Hallaron, S. Hinrichs, and T. Gross. The Per-
formance Impact of Fast Synchronization in Parallel Computers. InInternational
Conference on Supercomputing, pages 1–10, Barcelona, Spain, July 1995.

[SSOG93] J. Subhlok, J. M. Stichnoth, D. R. O’Hallaron, and T. Gross. Exploiting Task and
Data Parallelism on a Multicomputer. InFourth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 13–22, San Diego, CA,
May 1993.

[Sti93] J. Stichnoth.Efficient compilationof array statements for private memory systems.
Technical Report CMU-CS-93-109, Carnegie Mellon University, February 1993.

[Sti94] J. Stichnoth. Optimizing Data Movement for Regular and Irregular Parallel Sci-
entific Applications. Thesis proposal, August 1994.

Bibliography 136

[Sto77] H. S. Stone. Multiprocessor Scheduling with the Aid of Network Flow Algorithms.
IEEE Transactions on Software Engineering, SE-3(1):85–93, January 1977.

[Str91] T. Stricker. Message routing on irregular 2d-meshes and tori. InProceedings
of the 6th Distributed Memory Computing Conference, pages 170–177, Portland,
OR, April 1991. Also appeared as Technical Report CMU-CS-91-109, Carnegie
Mellon School of Computer Science.

[Sub90] J. Subhlok.Analysis of Synchronization in a Parallel Programming Environment.
Ph.D. thesis, Rice University, September 1990.

[Sun90] V. S. Sunderam. PVM: a Framework for Parallel Distributed Computing.Con-
currency: Practice and Experience, 2(4):315–39, December 1990.

[TP92] P. Tu and D. Padua. Array Privatization for Shared and Distributed Memory
Machines. InWorkshop on Languages, Compilers, and Run-Time Environments
for Distributed Memory Machines, Boulder, CO, October 1992.

[Tse89] P.-S. Tseng.A Parallelizing Compiler for Distributed Memory Computers. Ph.D.
thesis, Carnegie Mellon University, 1989.

[Tse95] C.-W. Tseng. Compiler Optimizations for Eliminating Barrier Synchronization. In
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
1995.

[Tur92] J. S. Turner. Managing Bandwidth in ATM Networks with Bursty Traffic.IEEE
Network, 6(5):50–58, September 1992.

[Val90] L. Valiant. A Bridging Model for Parallel Computation.Communications of the
ACM, 33(8):103–111, August 1990.

[vLT87] J. van Leeuwan and R. B. Tan. Interval Routing.The Computer Journal,
30(4):298–307, 1987.

[War95] T. E. Warfel. Tasks and Connection Sets: Choreographed Communication on
a Reconfigurable Connection-based Parallel Computer. Ph.D. thesis, Carnegie
Mellon University, August 1995.

[Who91] S. Wholey.Automatic Data Mapping for Distributed-Memory Parallel Computers.
Ph.D. thesis, Carnegie Mellon University, 1991.

[YO94] B. Yang and D. R. O’Hallaron. Procedure Call Models for Distributed Parameters
in Data Parallel Programs. InScalable Parallel Libraries Conference II, October
1994.

